Suppr超能文献

突触前兰尼碱受体-CamKII信号传导是转运小泡活性依赖性捕获所必需的。

Presynaptic ryanodine receptor-CamKII signaling is required for activity-dependent capture of transiting vesicles.

作者信息

Wong Man Yan, Shakiryanova Dinara, Levitan Edwin S

机构信息

Department of Pharmacology, University of Pittsburgh, Pittsburgh, PA , 15261, USA.

出版信息

J Mol Neurosci. 2009 Feb;37(2):146-50. doi: 10.1007/s12031-008-9080-8. Epub 2008 Jul 1.

Abstract

Activity elicits capture of dense-core vesicles (DCVs) that transit through resting Drosophila synaptic boutons to produce a rebound in presynaptic neuropeptide content following release. The onset of capture overlaps with an increase in the mobility of DCVs already present in synaptic boutons. Vesicle mobilization requires Ca(2+)-induced Ca2+ release by presynaptic endoplasmic reticulum (ER) ryanodine receptors (RyRs) that in turn stimulates Ca2+/calmodulin-dependent kinase II (CamKII). Here we show that the same signaling is required for activity-dependent capture of transiting DCVs. Specifically, the CamKII inhibitor KN-93, but not its inactive analog KN-92, eliminated the rebound replacement of neuropeptidergic DCVs in synaptic boutons. Furthermore, pharmacologically or genetically inhibiting neuronal sarco-endoplasmic reticulum calcium ATPase to deplete presynaptic ER Ca2+ stores or directly inhibiting RyRs prevented the capture response. These results show that the presynaptic RyR-CamKII pathway, which triggers mobilization of resident synaptic DCVs to facilitate exocytosis, also mediates activity-dependent capture of transiting DCVs to replenish neuropeptide stores.

摘要

活动引发密集核心囊泡(DCV)的捕获,这些囊泡穿过静止的果蝇突触小体,在释放后使突触前神经肽含量产生反弹。捕获的开始与突触小体中已存在的DCV流动性增加相重叠。囊泡的动员需要突触前内质网(ER)兰尼碱受体(RyR)通过钙诱导的钙释放,进而刺激钙/钙调蛋白依赖性激酶II(CamKII)。在这里,我们表明相同的信号传导对于活动依赖性捕获转运中的DCV是必需的。具体而言,CamKII抑制剂KN-93而非其无活性类似物KN-92消除了突触小体中神经肽能DCV的反弹替代。此外,通过药理学或遗传学方法抑制神经元肌浆内质网钙ATP酶以耗尽突触前内质网钙储存或直接抑制RyR可阻止捕获反应。这些结果表明,触发驻留突触DCV动员以促进胞吐作用的突触前RyR-CamKII途径,也介导活动依赖性捕获转运中的DCV以补充神经肽储存。

相似文献

1
Presynaptic ryanodine receptor-CamKII signaling is required for activity-dependent capture of transiting vesicles.
J Mol Neurosci. 2009 Feb;37(2):146-50. doi: 10.1007/s12031-008-9080-8. Epub 2008 Jul 1.
3
Signaling for vesicle mobilization and synaptic plasticity.
Mol Neurobiol. 2008 Feb;37(1):39-43. doi: 10.1007/s12035-008-8014-3. Epub 2008 Apr 30.
4
Activity Induces Fmr1-Sensitive Synaptic Capture of Anterograde Circulating Neuropeptide Vesicles.
J Neurosci. 2016 Nov 16;36(46):11781-11787. doi: 10.1523/JNEUROSCI.2212-16.2016.
5
Synaptic neuropeptide release by dynamin-dependent partial release from circulating vesicles.
Mol Biol Cell. 2015 Jul 1;26(13):2466-74. doi: 10.1091/mbc.E15-01-0002. Epub 2015 Apr 22.
6
Dense core vesicle release: controlling the where as well as the when.
Genetics. 2014 Mar;196(3):601-4. doi: 10.1534/genetics.113.159905.
8
Differential control of presynaptic CaMKII activation and translocation to active zones.
J Neurosci. 2011 Jun 22;31(25):9093-100. doi: 10.1523/JNEUROSCI.0550-11.2011.
9
Changes in the distribution of calcium calmodulin-dependent protein kinase II at the presynaptic bouton after depolarization.
Brain Cell Biol. 2006 Jun;35(2-3):117-24. doi: 10.1007/s11068-007-9012-5. Epub 2007 Sep 20.
10
Synapsin Is Required for Dense Core Vesicle Capture and cAMP-Dependent Neuropeptide Release.
J Neurosci. 2021 May 12;41(19):4187-4201. doi: 10.1523/JNEUROSCI.2631-20.2021. Epub 2021 Apr 5.

引用本文的文献

2
SSRI antidepressants differentially modulate serotonin reuptake and release in Drosophila.
J Neurochem. 2022 Sep;162(5):404-416. doi: 10.1111/jnc.15658. Epub 2022 Jul 9.
3
CaMKII controls neuromodulation via neuropeptide gene expression and axonal targeting of neuropeptide vesicles.
PLoS Biol. 2020 Aug 10;18(8):e3000826. doi: 10.1371/journal.pbio.3000826. eCollection 2020 Aug.
5
Sexual Dimorphism in a Reciprocal Interaction of Ryanodine and IP Receptors in the Induction of Hyperalgesic Priming.
J Neurosci. 2017 Feb 22;37(8):2032-2044. doi: 10.1523/JNEUROSCI.2911-16.2017. Epub 2017 Jan 23.
6
Dendritic and axonal mechanisms of Ca2+ elevation impair BDNF transport in Aβ oligomer-treated hippocampal neurons.
Mol Biol Cell. 2015 Mar 15;26(6):1058-71. doi: 10.1091/mbc.E14-12-1612. Epub 2015 Jan 21.
8
Dense core vesicle release: controlling the where as well as the when.
Genetics. 2014 Mar;196(3):601-4. doi: 10.1534/genetics.113.159905.
9
Vesicle capture, not delivery, scales up neuropeptide storage in neuroendocrine terminals.
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3597-601. doi: 10.1073/pnas.1322170111. Epub 2014 Feb 18.
10
Second messengers mediating the expression of neuroplasticity in a model of chronic pain in the rat.
J Pain. 2014 Mar;15(3):312-20. doi: 10.1016/j.jpain.2013.12.005. Epub 2014 Jan 7.

本文引用的文献

2
Activity-induced synaptic capture and exocytosis of the neuronal serine protease neurotrypsin.
J Neurosci. 2008 Feb 13;28(7):1568-79. doi: 10.1523/JNEUROSCI.3398-07.2008.
5
A Drosophila kinesin required for synaptic bouton formation and synaptic vesicle transport.
Nat Neurosci. 2007 Aug;10(8):980-9. doi: 10.1038/nn1936. Epub 2007 Jul 22.
7
In vivo imaging of vesicle motion and release at the Drosophila neuromuscular junction.
Nat Protoc. 2007;2(5):1117-25. doi: 10.1038/nprot.2007.142.
8
Activity-dependent synaptic capture of transiting peptidergic vesicles.
Nat Neurosci. 2006 Jul;9(7):896-900. doi: 10.1038/nn1719. Epub 2006 Jun 11.
9
Activity-dependent liberation of synaptic neuropeptide vesicles.
Nat Neurosci. 2005 Feb;8(2):173-8. doi: 10.1038/nn1377. Epub 2005 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验