Boland Barry, Kumar Asok, Lee Sooyeon, Platt Frances M, Wegiel Jerzy, Yu W Haung, Nixon Ralph A
Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962, USA.
J Neurosci. 2008 Jul 2;28(27):6926-37. doi: 10.1523/JNEUROSCI.0800-08.2008.
Macroautophagy, a major pathway for organelle and protein turnover, has been implicated in the neurodegeneration of Alzheimer's disease (AD). The basis for the profuse accumulation of autophagic vacuoles (AVs) in affected neurons of the AD brain, however, is unknown. In this study, we show that constitutive macroautophagy in primary cortical neurons is highly efficient, because newly formed autophagosomes are rapidly cleared by fusion with lysosomes, accounting for their scarcity in the healthy brain. Even after macroautophagy is strongly induced by suppressing mTOR (mammalian target of rapamycin) kinase activity with rapamycin or nutrient deprivation, active cathepsin-positive autolysosomes rather than LC3-II-positive autophagosomes predominate, implying efficient autophagosome clearance in healthy neurons. In contrast, selectively impeding late steps in macroautophagy by inhibiting cathepsin-mediated proteolysis within autolysosomes with cysteine- and aspartyl-protease inhibitors caused a marked accumulation of electron-dense double-membrane-limited AVs, containing cathepsin D and incompletely degraded LC3-II in perikarya and neurites. Similar structures accumulated in large numbers when fusion of autophagosomes with lysosomes was slowed by disrupting their transport on microtubules with vinblastine. Finally, we find that the autophagic vacuoles accumulating after protease inhibition or prolonged vinblastine treatment strongly resembled AVs that collect in dystrophic neurites in the AD brain and in an AD mouse model. We conclude that macroautophagy is constitutively active and highly efficient in healthy neurons and that the autophagic pathology observed in AD most likely arises from impaired clearance of AVs rather than strong autophagy induction alone. Therapeutic modulation of autophagy in AD may, therefore, require targeting late steps in the autophagic pathway.
巨自噬是细胞器和蛋白质周转的主要途径,与阿尔茨海默病(AD)的神经退行性变有关。然而,AD脑受影响神经元中自噬泡(AVs)大量积累的原因尚不清楚。在本研究中,我们发现原代皮质神经元中的组成型巨自噬效率很高,因为新形成的自噬体通过与溶酶体融合而迅速清除,这就是它们在健康大脑中数量稀少的原因。即使在用雷帕霉素抑制mTOR(雷帕霉素的哺乳动物靶点)激酶活性或营养剥夺强烈诱导巨自噬后,活跃的组织蛋白酶阳性自溶酶体而非LC3-II阳性自噬体占主导,这意味着健康神经元中自噬体清除效率很高。相比之下,用半胱氨酸和天冬氨酸蛋白酶抑制剂抑制自溶酶体内组织蛋白酶介导的蛋白水解,选择性地阻碍巨自噬的后期步骤,导致电子致密的双膜限制AVs显著积累,这些AVs在胞体和神经突中含有组织蛋白酶D和未完全降解的LC3-II。当用长春碱破坏自噬体与溶酶体在微管上的运输,从而减缓它们的融合时,类似的结构大量积累。最后,我们发现蛋白酶抑制或长春碱长期处理后积累的自噬泡与AD脑和AD小鼠模型中营养不良神经突中聚集的AVs非常相似。我们得出结论,巨自噬在健康神经元中是组成型活跃且高效的,AD中观察到的自噬病理很可能源于AVs清除受损,而不仅仅是自噬强烈诱导。因此,AD中自噬的治疗性调节可能需要针对自噬途径的后期步骤。