Leão Richardson N, Leão Ricardo M, da Costa Luciano F, Rock Levinson S, Walmsley Bruce
Synapse and Hearing Laboratory, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
Eur J Neurosci. 2008 Jun;27(12):3095-108. doi: 10.1111/j.1460-9568.2008.06297.x.
Principal cells of the medial nucleus of the trapezoid body (MNTB) are simple round neurons that receive a large excitatory synapse (the calyx of Held) and many small inhibitory synapses on the soma. Strangely, these neurons also possess one or two short tufted dendrites, whose function is unknown. Here we assess the role of these MNTB cell dendrites using patch-clamp recordings, imaging and immunohistochemistry techniques. Using outside-out patches and immunohistochemistry, we demonstrate the presence of dendritic Na+ channels. Current-clamp recordings show that tetrodotoxin applied onto dendrites impairs action potential (AP) firing. Using Na+ imaging, we show that the dendrite may serve to maintain AP amplitudes during high-frequency firing, as Na+ clearance indendritic compartments is faster than axonal compartments. Prolonged high-frequency firing can diminish Na+ gradients in the axon while the dendritic gradient remains closer to resting conditions; therefore, the dendrite can provide additional inward current during prolonged firing. Using electron microscopy, we demonstrate that there are small excitatory synaptic boutons on dendrites. Multi-compartment MNTB cell simulations show that, with an active dendrite, dendritic excitatory postsynaptic currents (EPSCs) elicit delayed APs compared with calyceal EPSCs. Together with high- and low-threshold voltage-gated K+ currents, we suggest that the function of the MNTB dendrite is to improve high-fidelity firing, and our modelling results indicate that an active dendrite could contribute to a 'dual' firing mode for MNTB cells (an instantaneous response to calyceal inputs and a delayed response to non-calyceal dendritic excitatory postsynaptic potentials).
梯形体内侧核(MNTB)的主细胞是简单的圆形神经元,其胞体上接受一个大的兴奋性突触(Held壶腹)和许多小的抑制性突触。奇怪的是,这些神经元还拥有一两个短的簇状树突,其功能尚不清楚。在这里,我们使用膜片钳记录、成像和免疫组织化学技术来评估这些MNTB细胞树突的作用。通过外向膜片和免疫组织化学,我们证明了树突状Na+通道的存在。电流钳记录表明,应用于树突的河豚毒素会损害动作电位(AP)的发放。使用Na+成像,我们表明树突可能在高频发放期间有助于维持AP幅度,因为树突区域的Na+清除比轴突区域更快。长时间的高频发放会降低轴突中的Na+梯度,而树突梯度则更接近静息状态;因此,树突可以在长时间发放期间提供额外的内向电流。使用电子显微镜,我们证明了树突上存在小的兴奋性突触小体。多室MNTB细胞模拟表明,对于有活性的树突,与壶腹兴奋性突触后电流(EPSC)相比,树突兴奋性突触后电流(EPSC)会引发延迟的AP。结合高阈值和低阈值电压门控K+电流,我们认为MNTB树突的功能是改善高保真发放,并且我们的建模结果表明,有活性的树突可能有助于MNTB细胞的“双重”发放模式(对壶腹输入的即时反应和对非壶腹树突兴奋性突触后电位的延迟反应)。
Front Comput Neurosci. 2020-2-4
Front Cell Neurosci. 2019-10-15
Front Cell Neurosci. 2018-1-4
Eur J Neurosci. 2010-10-14
J Neurosci. 2009-11-4