Suppr超能文献

一种钠激活钾通道支持高频发射,并在动作电位幅度的快速调制过程中降低能量消耗。

A sodium-activated potassium channel supports high-frequency firing and reduces energetic costs during rapid modulations of action potential amplitude.

机构信息

Section of Neurobiology and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA.

出版信息

J Neurophysiol. 2013 Apr;109(7):1713-23. doi: 10.1152/jn.00875.2012. Epub 2013 Jan 16.

Abstract

We investigated the ionic mechanisms that allow dynamic regulation of action potential (AP) amplitude as a means of regulating energetic costs of AP signaling. Weakly electric fish generate an electric organ discharge (EOD) by summing the APs of their electric organ cells (electrocytes). Some electric fish increase AP amplitude during active periods or social interactions and decrease AP amplitude when inactive, regulated by melanocortin peptide hormones. This modulates signal amplitude and conserves energy. The gymnotiform Eigenmannia virescens generates EODs at frequencies that can exceed 500 Hz, which is energetically challenging. We examined how E. virescens meets that challenge. E. virescens electrocytes exhibit a voltage-gated Na(+) current (I(Na)) with extremely rapid recovery from inactivation (τ(recov) = 0.3 ms) allowing complete recovery of Na(+) current between APs even in fish with the highest EOD frequencies. Electrocytes also possess an inwardly rectifying K(+) current and a Na(+)-activated K(+) current (I(KNa)), the latter not yet identified in any gymnotiform species. In vitro application of melanocortins increases electrocyte AP amplitude and the magnitudes of all three currents, but increased I(KNa) is a function of enhanced Na(+) influx. Numerical simulations suggest that changing I(Na) magnitude produces corresponding changes in AP amplitude and that K(Na) channels increase AP energy efficiency (10-30% less Na(+) influx/AP) over model cells with only voltage-gated K(+) channels. These findings suggest the possibility that E. virescens reduces the energetic demands of high-frequency APs through rapidly recovering Na(+) channels and the novel use of KNa channels to maximize AP amplitude at a given Na(+) conductance.

摘要

我们研究了允许动作电位 (AP) 幅度动态调节的离子机制,作为调节 AP 信号能量成本的一种手段。电鱼通过叠加其电器官细胞 (电器细胞) 的 AP 来产生电器官放电 (EOD)。一些电鱼在活跃期或社交互动期间增加 AP 幅度,在不活跃时减少 AP 幅度,由黑素皮质素肽激素调节。这调节了信号幅度并节省了能量。电鳗 Eigenmannia virescens 以可超过 500 Hz 的频率产生 EOD,这在能量上具有挑战性。我们研究了 E. virescens 如何应对这一挑战。E. virescens 电器细胞表现出电压门控 Na(+)电流 (I(Na)),其失活后恢复速度极快(τ(recov)=0.3 ms),即使在具有最高 EOD 频率的鱼类中,AP 之间也能完全恢复 Na(+)电流。电器细胞还具有内向整流性 K(+)电流和 Na(+)-激活的 K(+)电流 (I(KNa)),后者尚未在任何电鳗物种中鉴定出来。在体外应用黑素皮质素会增加电器细胞的 AP 幅度和所有三种电流的幅度,但增加的 I(KNa)是增强 Na(+)内流的函数。数值模拟表明,改变 I(Na)幅度会导致 AP 幅度相应变化,并且 K(Na)通道会增加 AP 能量效率(Na(+)内流量/AP 减少 10-30%),超过仅具有电压门控 K(+)通道的模型细胞。这些发现表明,E. virescens 可能通过快速恢复的 Na(+)通道和新型使用 KNa 通道来最大限度地提高给定 Na(+)电导下的 AP 幅度,从而降低高频 AP 的能量需求。

相似文献

3
A model for studying the energetics of sustained high frequency firing.研究持续高频发射能量学的模型。
PLoS One. 2018 Apr 30;13(4):e0196508. doi: 10.1371/journal.pone.0196508. eCollection 2018.
5
Voltage-gated potassium conductances in Gymnotus electrocytes(AB).裸背电鳗发电细胞中的电压门控钾离子电导(AB)。
Neuroscience. 2007 Mar 16;145(2):453-63. doi: 10.1016/j.neuroscience.2006.12.002. Epub 2007 Jan 12.
6
Sodium-dependent plateau potentials in electrocytes of the electric fish Gymnotus carapo.裸背电鳗电细胞中的钠依赖性平台电位。
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Jan;191(1):1-11. doi: 10.1007/s00359-004-0567-7. Epub 2004 Sep 11.
10
Circadian and social cues regulate ion channel trafficking.昼夜节律和社会线索调节离子通道转运。
PLoS Biol. 2009 Sep;7(9):e1000203. doi: 10.1371/journal.pbio.1000203. Epub 2009 Sep 29.

引用本文的文献

2
5
Sodium sensitivity of K channels in mouse CA1 neurons.小鼠 CA1 神经元中 K 通道的钠敏性。
J Neurophysiol. 2021 May 1;125(5):1690-1697. doi: 10.1152/jn.00064.2021. Epub 2021 Mar 31.
7
Electrostatic Tuning of a Potassium Channel in Electric Fish.电鱼钾通道的静电调节。
Curr Biol. 2018 Jul 9;28(13):2094-2102.e5. doi: 10.1016/j.cub.2018.05.012. Epub 2018 Jun 21.
8
A model for studying the energetics of sustained high frequency firing.研究持续高频发射能量学的模型。
PLoS One. 2018 Apr 30;13(4):e0196508. doi: 10.1371/journal.pone.0196508. eCollection 2018.

本文引用的文献

2
PIP₂ modulation of Slick and Slack K⁺ channels.PIP₂ 对 Slick 和 Slack K⁺ 通道的调制。
Biochem Biophys Res Commun. 2012 Jul 27;424(2):208-13. doi: 10.1016/j.bbrc.2012.06.038. Epub 2012 Jun 21.
7
Potassium channel modulation and auditory processing.钾通道调制与听觉处理。
Hear Res. 2011 Sep;279(1-2):32-42. doi: 10.1016/j.heares.2011.03.004. Epub 2011 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验