Gregor Jens, Benson Thomas
Department of Computer Science, University of Tennessee, 1122 Volunteer Blvd., Knoxville, TN 37996, USA.
IEEE Trans Med Imaging. 2008;27(7):918-24. doi: 10.1109/TMI.2008.923696.
Iterative X-ray computed tomography (CT) algorithms have the potential for producing high-quality images but are computationally very demanding, especially when applied to high-resolution problems. Focusing on simultaneous iterative reconstruction technique (SIRT), we provide an eigenvalue based scheme for automatically determining a near-optimal value of the relaxation parameter. This accelerates the convergence rate of SIRT to the point where only half the number of iterations normally required is needed. We also modify the way SIRT uses preconditioning to solve a weighted least squares problem. The resulting algorithm, which we call PSIRT, is associated with a smaller memory footprint and calls for less data to be communicated in a distributed-memory implementation. Experimental residual norm and timing results are provided based on cone-beam micro-CT mouse data, including for an ordered subsets study.
迭代式X射线计算机断层扫描(CT)算法有潜力生成高质量图像,但计算要求非常高,尤其是应用于高分辨率问题时。聚焦于同步迭代重建技术(SIRT),我们提供了一种基于特征值的方案,用于自动确定松弛参数的近似最优值。这将SIRT的收敛速度加快到通常所需迭代次数仅一半的程度。我们还修改了SIRT使用预处理来解决加权最小二乘问题的方式。由此产生的算法,我们称之为PSIRT,具有更小的内存占用,并且在分布式内存实现中需要传输的数据更少。基于锥束微型CT小鼠数据提供了实验残差范数和计时结果,包括有序子集研究的结果。