Suppr超能文献

SIRT的计算分析与改进

Computational analysis and improvement of SIRT.

作者信息

Gregor Jens, Benson Thomas

机构信息

Department of Computer Science, University of Tennessee, 1122 Volunteer Blvd., Knoxville, TN 37996, USA.

出版信息

IEEE Trans Med Imaging. 2008;27(7):918-24. doi: 10.1109/TMI.2008.923696.

Abstract

Iterative X-ray computed tomography (CT) algorithms have the potential for producing high-quality images but are computationally very demanding, especially when applied to high-resolution problems. Focusing on simultaneous iterative reconstruction technique (SIRT), we provide an eigenvalue based scheme for automatically determining a near-optimal value of the relaxation parameter. This accelerates the convergence rate of SIRT to the point where only half the number of iterations normally required is needed. We also modify the way SIRT uses preconditioning to solve a weighted least squares problem. The resulting algorithm, which we call PSIRT, is associated with a smaller memory footprint and calls for less data to be communicated in a distributed-memory implementation. Experimental residual norm and timing results are provided based on cone-beam micro-CT mouse data, including for an ordered subsets study.

摘要

迭代式X射线计算机断层扫描(CT)算法有潜力生成高质量图像,但计算要求非常高,尤其是应用于高分辨率问题时。聚焦于同步迭代重建技术(SIRT),我们提供了一种基于特征值的方案,用于自动确定松弛参数的近似最优值。这将SIRT的收敛速度加快到通常所需迭代次数仅一半的程度。我们还修改了SIRT使用预处理来解决加权最小二乘问题的方式。由此产生的算法,我们称之为PSIRT,具有更小的内存占用,并且在分布式内存实现中需要传输的数据更少。基于锥束微型CT小鼠数据提供了实验残差范数和计时结果,包括有序子集研究的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验