Suppr超能文献

X射线计算机断层扫描采集参数对增材制造缺陷图像质量及检测概率的影响

The Influence of X-Ray Computed Tomography Acquisition Parameters on Image Quality and Probability of Detection of Additive Manufacturing Defects.

作者信息

Kim Felix H, Pintar Adam L, Moylan Shawn P, Garboczi Edward J

机构信息

National Institute of Standards and Technology, Gaithersburg, MD 20899.

National Institute of Standards and Technology, Boulder, CO 80305.

出版信息

J Manuf Sci Eng. 2019 Nov;141(11). doi: 10.1115/1.4044515.

Abstract

X-ray computed tomography (XCT) is a promising nondestructive evaluation technique for additive manufacturing (AM) parts with complex shapes. Industrial XCT scanning is a relatively new development, and XCT has several acquisition parameters that a user can change for a scan whose effects are not fully understood. An artifact incorporating simulated defects of different sizes was produced using laser powder bed fusion (LPBF) AM. The influence of six XCT acquisition parameters was investigated experimentally based on a fractional factorial designed experiment. Twenty experimental runs were performed. The noise level of the XCT images was affected by the acquisition parameters, and the importance of the acquisition parameters was ranked. The measurement results were further analyzed to understand the probability of detection (POD) of the simulated defects. The POD determination process is detailed, including estimation of the POD confidence limit curve using a bootstrap method. The results are interpreted in the context of the AM process and XCT acquisition parameters.

摘要

X射线计算机断层扫描(XCT)是一种很有前景的用于复杂形状增材制造(AM)零件的无损评估技术。工业XCT扫描是一项相对较新的发展,XCT有几个采集参数,用户可以针对扫描改变这些参数,但其效果尚未完全了解。使用激光粉末床熔融(LPBF)增材制造工艺制作了一个包含不同尺寸模拟缺陷的工件。基于分数析因设计实验,对六个XCT采集参数的影响进行了实验研究。进行了二十次实验运行。XCT图像的噪声水平受采集参数影响,并对采集参数的重要性进行了排序。对测量结果进行了进一步分析,以了解模拟缺陷的检测概率(POD)。详细介绍了POD确定过程,包括使用自助法估计POD置信限曲线。结合增材制造工艺和XCT采集参数对结果进行了解释。

相似文献

4
X-ray computed tomography evaluations of additive manufactured multimaterial composites.
J Microsc. 2022 Mar;285(3):131-143. doi: 10.1111/jmi.13034. Epub 2021 Jun 4.
5
X-ray tomography for the advancement of laser powder bed fusion additive manufacturing.
J Microsc. 2022 Mar;285(3):121-130. doi: 10.1111/jmi.12930. Epub 2020 Jun 21.
6
8
Non-destructive detection of critical defects in additive manufacturing.
Sci Rep. 2025 Feb 25;15(1):6740. doi: 10.1038/s41598-025-91608-6.
9
Benchmarking of Nondestructive Testing for Additive Manufacturing.
3D Print Addit Manuf. 2021 Aug 1;8(4):263-270. doi: 10.1089/3dp.2020.0204. Epub 2021 Aug 4.

本文引用的文献

2
Fast and flexible X-ray tomography using the ASTRA toolbox.
Opt Express. 2016 Oct 31;24(22):25129-25147. doi: 10.1364/OE.24.025129.
3
Characterization of Metal Powders Used for Additive Manufacturing.
J Res Natl Inst Stand Technol. 2014 Sep 16;119:460-93. doi: 10.6028/jres.119.018. eCollection 2014.
4
Comparison of SIRT and SQS for Regularized Weighted Least Squares Image Reconstruction.
IEEE Trans Comput Imaging. 2015 Mar;1(1):44-55. doi: 10.1109/TCI.2015.2442511. Epub 2015 Jun 5.
5
The ASTRA Toolbox: A platform for advanced algorithm development in electron tomography.
Ultramicroscopy. 2015 Oct;157:35-47. doi: 10.1016/j.ultramic.2015.05.002. Epub 2015 May 6.
8
Computational analysis and improvement of SIRT.
IEEE Trans Med Imaging. 2008;27(7):918-24. doi: 10.1109/TMI.2008.923696.
9
Principles of CT: radiation dose and image quality.
J Nucl Med Technol. 2007 Dec;35(4):213-25; quiz 226-8. doi: 10.2967/jnmt.106.037846. Epub 2007 Nov 15.
10
Mutual-information-based registration of medical images: a survey.
IEEE Trans Med Imaging. 2003 Aug;22(8):986-1004. doi: 10.1109/TMI.2003.815867.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验