Suppr超能文献

一种用于酵母群体特征描述的计算机辅助测量系统,结合了 2D 图像分析、电子颗粒计数器和流式细胞术。

A computer-aided measuring system for the characterization of yeast populations combining 2D-image analysis, electronic particle counter, and flow cytometry.

机构信息

Department of Molecular Cell Biology, Section of Molecular Cytology, University of Amsterdam, Plantage Muidergracht, TV Amsterdam, The Netherlands.

出版信息

Biotechnol Bioeng. 1992 Feb 5;39(3):343-50. doi: 10.1002/bit.260390313.

Abstract

An integrated measuring system was developed that directly compares the shape of size distributions of Saccharomyces cerevisiae populations obtained from either microscopic measurements, electronic particle counter, or flow cytometer. Because of its asymmetric mode of growth, a yeast population consists of two different subpopulations, parents and daughters. Although electronic particle counter and flow cytometer represent fast methods to assess the growth state of the population as a whole, the determination of important cell cycle parameters like the fraction of daughters or budded cells requires microscopic observation. We therefore adapted a semiautomatic and interactive 2D-image processing program for rapid and accurate determination of volume distributions of the different sub-populations. The program combines the capacity of image processing and volume calculation by contour-rotation, with the potential of visual evaluation of the cells. High-contrast images from electron micrographs are well suited for image analysis, but the necessary air drying caused the cells to shrink to 35% of their hydrated volume. As an alternative, hydrated cells overstained with the fluorochrome calcofluor and visualized by fluorescence light microscopy were used. Cell volumes calculated from length, and diameter measurements with the assumption of an ellipsoid cell shape were underestimated as compared to volumes derived from 2D-image analysis and contour rotation, because of a deviating cell shape, especially in the older parent cells with more than one bud scar. The bimodal volume distribution obtained from microscopic measurements was identical to the protein distribution measured with the flow cytometer using cells stained with dansylchloride, but differed significantly from the size distribution measured with the electronic particle counter. Compared with the flow cytometer, 2-D image analysis can thus provide accurate distributions with important additional information on, for instance, the distributions of subpopulations like parents, daughters, or budded cells.

摘要

我们开发了一种集成测量系统,可以直接比较从显微镜测量、电子颗粒计数器或流式细胞仪获得的酿酒酵母种群的大小分布形状。由于其不对称的生长方式,酵母种群由两个不同的亚群组成,即亲代和子代。虽然电子颗粒计数器和流式细胞仪代表了评估群体整体生长状态的快速方法,但要确定重要的细胞周期参数,如子代或芽细胞的比例,需要进行显微镜观察。因此,我们改编了一种半自动和交互式的 2D 图像处理程序,用于快速准确地确定不同亚群的体积分布。该程序将图像处理和体积计算的能力与细胞的可视化评估能力相结合。电子显微镜的高对比度图像非常适合图像分析,但必要的空气干燥会导致细胞收缩至其水合体积的 35%。作为替代方法,使用经过荧光染料钙荧光素过度染色的水合细胞,并通过荧光显微镜进行可视化。与从 2D 图像分析和轮廓旋转得出的体积相比,根据长度和直径测量并假设细胞为椭圆形细胞形状计算出的细胞体积被低估了,这是因为细胞形状的偏差,尤其是在具有一个以上芽痕的较老亲代细胞中。从显微镜测量中获得的双峰体积分布与使用荧光染料丹磺酰氯染色的细胞通过流式细胞仪测量的蛋白质分布相同,但与使用电子颗粒计数器测量的大小分布有显著差异。与流式细胞仪相比,2D 图像分析因此可以提供准确的分布,并提供有关例如亲代、子代或芽细胞等亚群分布的重要附加信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验