Benamar Abdelilah, Rolletschek Hardy, Borisjuk Ljudmilla, Avelange-Macherel Marie-Hélène, Curien Gilles, Mostefai H Ahmed, Andriantsitohaina Ramaroson, Macherel David
UMR 1191 Physiologie Moléculaire des Semences, Université d'Angers/INH/INRA, Angers, France.
Biochim Biophys Acta. 2008 Oct;1777(10):1268-75. doi: 10.1016/j.bbabio.2008.06.002. Epub 2008 Jun 9.
Actively respiring animal and plant tissues experience hypoxia because of mitochondrial O(2) consumption. Controlling oxygen balance is a critical issue that involves in mammals hypoxia-inducible factor (HIF) mediated transcriptional regulation, cytochrome oxidase (COX) subunit adjustment and nitric oxide (NO) as a mediator in vasodilatation and oxygen homeostasis. In plants, NO, mainly derived from nitrite, is also an important signalling molecule. We describe here a mechanism by which mitochondrial respiration is adjusted to prevent a tissue to reach anoxia. During pea seed germination, the internal atmosphere was strongly hypoxic due to very active mitochondrial respiration. There was no sign of fermentation, suggesting a down-regulation of O(2) consumption near anoxia. Mitochondria were found to finely regulate their surrounding O(2) level through a nitrite-dependent NO production, which was ascertained using electron paramagnetic resonance (EPR) spin trapping of NO within membranes. At low O(2), nitrite is reduced into NO, likely at complex III, and in turn reversibly inhibits COX, provoking a rise to a higher steady state level of oxygen. Since NO can be re-oxidized into nitrite chemically or by COX, a nitrite-NO pool is maintained, preventing mitochondrial anoxia. Such an evolutionarily conserved mechanism should have an important role for oxygen homeostasis in tissues undergoing hypoxia.
由于线粒体对氧气的消耗,正在进行呼吸作用的动植物组织会经历缺氧状态。控制氧平衡是一个关键问题,涉及哺乳动物中缺氧诱导因子(HIF)介导的转录调控、细胞色素氧化酶(COX)亚基的调节以及一氧化氮(NO)作为血管舒张和氧稳态的介质。在植物中,主要来源于亚硝酸盐的NO也是一种重要的信号分子。我们在此描述一种调节线粒体呼吸以防止组织达到缺氧状态的机制。在豌豆种子萌发过程中,由于线粒体呼吸非常活跃,内部环境处于严重缺氧状态。没有发酵的迹象,这表明在接近缺氧时氧气消耗有所下调。通过电子顺磁共振(EPR)对膜内NO的自旋捕获确定,线粒体通过亚硝酸盐依赖性的NO产生来精细调节其周围的氧气水平。在低氧条件下,亚硝酸盐可能在复合体III处被还原为NO,进而可逆地抑制COX,促使氧气上升到更高的稳态水平。由于NO可以通过化学方式或被COX重新氧化为亚硝酸盐,因此维持了一个亚硝酸盐 - NO池,防止线粒体缺氧。这种进化上保守的机制对于经历缺氧的组织中的氧稳态应该具有重要作用。