Suppr超能文献

Characterization of a K26Q site-directed mutant of human parathyroid hormone expressed in yeast.

作者信息

Reppe S, Gabrielsen O S, Olstad O K, Morrison N, Saether O, Blingsmo O R, Gautvik V T, Gordeladze J, Haflan A K, Voelkel E F

机构信息

Department of Biochemistry, University of Oslo, Norway.

出版信息

J Biol Chem. 1991 Aug 5;266(22):14198-201.

PMID:1860837
Abstract

Human parathyroid hormone (hPTH) is susceptible to proteolytical cleavage both in humans and when expressed as a secretory product in Escherichia coli (Høgseth, A., Blingsmo, O. R., Saether, O., Gautvik, V. T., Holmgren, E., Hartmanis, M., Josephson, S., Gabrielsen, O. S., Gordeladze, J. O., Alestrøm, P., and Gautvik, K. M. (1990) J. Biol. Chem. 265, 7338-7344) and Saccharomyces cerevisiae (Gabrielsen, O. S., Reppe, S., Saether, O., Blingsmo, O. R., Sletten, K., Gordeladze, J. O., Høgset, A., Gautvik, V. T., Alestrøm, P., Oyen, T. B., and Gautvik, K. M. (1990) Gene (Amst.) 90, 255-262). In the latter system, one major site of cleavage was identified (Arg25-Lys26 decreased Lys27). To produce hPTH resistant to this proteolytic processing, a point mutation changing Lys26 to Gln was introduced, and the modified gene expressed in S. cerevisiae as a fusion protein with the alpha-factor leader sequence. The resulting major form of hPTH secreted to the growth medium was of full length showing that the mutation had eliminated internal processing. Consequently, the yield of the mutant hormone was significantly higher than obtained with the natural peptide. Using improved purification procedures, a significantly higher purity was also obtained. The secreted mutant hPTH-(1-84,Q26) had the correct size, full immunological reactivity with two different hPTH antisera, correct amino acid composition and N-terminal sequence, and correct mass as determined by mass spectrometry. Furthermore, the introduced mutation did not reduce the biological activity of the hormone as judged from its action in three biological assay systems: 1) a hormone-sensitive osteoblast adenylate cyclase assay; 2) an in vivo calcium mobilizing assay in rats; and 3) an in vitro bone resorption assay.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验