Department of Chemical Engineering, Imperial College, London SW7 2BY, UK.
Biotechnol Bioeng. 1993 Dec;42(11):1337-51. doi: 10.1002/bit.260421111.
This work describes investigations into the viability of cells growing on 3,4-dichloroaniline (34DCA). Two bioreactors are employed for microbial growth, a continuous stirred tank (CST) bioreactor with a 2-L working volume, and a three-phase air lift (TPAL) bioreactor with a 3-L working volume. Experiments have been performed at several dilution rates between 0.027 and 0.115 h(-1) in the CST bioreactor and between 0.111 and 0.500 h(-1) in the TPAL bioreactor. The specific ATP concentration was calculated at each dilution rate in the suspended biomass in both bioreactors as well as in the immobilized biomass in the TPAL bioreactor. The ATP was extracted from the cells using boiling tris-EDTA buffer (pH 7.75), and the quantity determined using a firefly (bioluminescence) technique. The cultures were inspected under an electron microscope to monitor compositional changes. Results from the CST bioreactor showed that the biomass-specific ATP concentration increases from 0.44 to 1.86 mg ATP g(-1) dry weight (dw) as dilution rate increases from 0.027 to 0.115 h(-1). At this upper dilution rate the cells were washed out. The specific ATP concentration reached a limiting average value of 1.73 mg ATP g(-1) dw, which is assumed to be the quantity of ATP in 100% viable biomass. In the TPAL bioreactor, the ATP level increased with dilution rate in both the immobilized and suspended biomass. The specific ATP concentration in the immobilized biomass increased from approximately 0.051 mg ATP g(-1) dw at dilution rates between 0.111 and 0.200 h(-1) to approximately 0.119 mg ATP g(-1) dw at dilution rates between 0.300 and 0.500 h(-1). This indicates that the immobilized biomass contained a viable cell fraction of around 5%. Based on these results, kinetic data for freely suspended cells should not be applied to the modeling of immobilized cell systems on the assumption that immobilized biomass is 100% viable.
这项工作描述了对在 3,4-二氯苯胺(34DCA)上生长的细胞的生存能力的研究。两种生物反应器用于微生物生长,一个是具有 2 升工作容积的连续搅拌槽(CST)生物反应器,另一个是具有 3 升工作容积的三相空气升力(TPAL)生物反应器。在 CST 生物反应器中,在 0.027 到 0.115 h(-1) 的几个稀释率下,以及在 TPAL 生物反应器中在 0.111 到 0.500 h(-1) 的几个稀释率下进行了实验。在两个生物反应器中的悬浮生物量以及 TPAL 生物反应器中的固定化生物量中,计算了每个稀释率下的特定 ATP 浓度。使用沸腾的 tris-EDTA 缓冲液(pH 7.75)从细胞中提取 ATP,并使用萤火虫(生物发光)技术确定数量。通过电子显微镜检查培养物以监测组成变化。CST 生物反应器的结果表明,当稀释率从 0.027 增加到 0.115 h(-1) 时,生物量特定的 ATP 浓度从 0.44 增加到 1.86 mg ATP g(-1) 干重(dw)。在这个较高的稀释率下,细胞被冲洗掉。特定的 ATP 浓度达到 1.73 mg ATP g(-1) dw 的限制平均值,这被认为是 100%存活生物量中的 ATP 量。在 TPAL 生物反应器中,在固定化和悬浮生物量中,ATP 水平随稀释率的增加而增加。固定化生物量中的特定 ATP 浓度从 0.111 到 0.200 h(-1) 之间的约 0.051 mg ATP g(-1) dw 增加到 0.300 到 0.500 h(-1) 之间的约 0.119 mg ATP g(-1) dw。这表明固定化生物量中含有大约 5%的存活细胞部分。基于这些结果,不应假设固定化生物量 100%存活,而将用于自由悬浮细胞的动力学数据应用于固定化细胞系统的建模。