Hooper Scott L, Hobbs Kevin H, Thuma Jeffrey B
Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, United States.
Prog Neurobiol. 2008 Oct;86(2):72-127. doi: 10.1016/j.pneurobio.2008.06.004. Epub 2008 Jun 20.
This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vertebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca(++) binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved.
这是关于无脊椎动物肌肉的一系列经典综述中的第二篇。我们在此涵盖细肌丝和粗肌丝结构、力产生及其调节的分子基础,以及一些无脊椎动物肌肉的两个特殊特性——强直收缩和异步肌肉。无脊椎动物的细肌丝与脊椎动物的细肌丝相似,尽管螺旋结构和原肌球蛋白排列存在细微差异。相比之下,无脊椎动物的粗肌丝与脊椎动物的横纹粗肌丝有很大不同,并且在无脊椎动物内部表现出很大的变异性。这种多样性的部分原因源于副肌球蛋白含量的变化,在非常大直径的无脊椎动物粗肌丝中其含量大幅增加。另一部分原因则来自于肌丝主干结构相对较小的变化,这导致肌丝的肌球蛋白头部位置总体相似(每14.5纳米有一圈旋转的头部),但细节上有很大变化(方位对齐时头部之间的距离从三个到数千个头部圈不等)。力产生的杠杆臂基础在脊椎动物和无脊椎动物中都是常见的,并且在一些无脊椎动物中,这个过程在接近原子水平上是可以理解 的。无脊椎动物的肌动球蛋白在细肌丝(原肌球蛋白:肌钙蛋白)和粗肌丝(主要通过钙离子直接结合到肌球蛋白)上都受到调节,并且大多数无脊椎动物肌肉受到双重调节。这些机制在分子水平上已得到很好的理解,但双重调节的行为效用则了解较少。最近已表明,与粗肌丝相关的巨大蛋白——收缩蛋白的磷酸化状态是强直收缩的分子基础。然而,异步肌肉活动背后的拉伸激活的分子基础仍未解决。