Suppr超能文献

使用5D张量投票推断分割密集运动层。

Inferring segmented dense motion layers using 5D tensor voting.

作者信息

Min Changki, Medioni Gérard

机构信息

Apple Inc., Cupertino, CA 95014, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2008 Sep;30(9):1589-602. doi: 10.1109/TPAMI.2007.70802.

Abstract

We present a novel local spatiotemporal approach to produce motion segmentation and dense temporal trajectories from an image sequence. A common representation of image sequences is a 3D spatiotemporal volume, (x,y,t), and its corresponding mathematical formalism is the fiber bundle. However, directly enforcing the spatiotemporal smoothness constraint is difficult in the fiber bundle representation. Thus, we convert the representation into a new 5D space (x,y,t,vx,vy) with an additional velocity domain, where each moving object produces a separate 3D smooth layer. The smoothness constraint is now enforced by extracting 3D layers using the tensor voting framework in a single step that solves both correspondence and segmentation simultaneously. Motion segmentation is achieved by identifying those layers, and the dense temporal trajectories are obtained by converting the layers back into the fiber bundle representation. We proceed to address three applications (tracking, mosaic, and 3D reconstruction) that are hard to solve from the video stream directly because of the segmentation and dense matching steps, but become straightforward with our framework. The approach does not make restrictive assumptions about the observed scene or camera motion and is therefore generally applicable. We present results on a number of data sets.

摘要

我们提出了一种新颖的局部时空方法,用于从图像序列中生成运动分割和密集的时间轨迹。图像序列的一种常见表示形式是三维时空体(x, y, t),其相应的数学形式是纤维丛。然而,在纤维丛表示中直接施加时空平滑约束是困难的。因此,我们将该表示转换为一个新的五维空间(x, y, t, vx, vy),其中增加了速度域,每个运动对象在该空间中产生一个单独的三维平滑层。现在,通过使用张量投票框架在单个步骤中提取三维层来施加平滑约束,该步骤同时解决了对应关系和分割问题。通过识别这些层来实现运动分割,通过将这些层转换回纤维丛表示来获得密集的时间轨迹。我们接着处理三个应用(跟踪、拼接和三维重建),由于分割和密集匹配步骤,这些应用很难直接从视频流中解决,但在我们的框架下变得简单易行。该方法对观察到的场景或相机运动不做限制性假设,因此具有普遍适用性。我们展示了在多个数据集上的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验