Suppr超能文献

通过核磁共振、分子动力学和诱变技术表征反式激活反应元件顶端环中的复杂动力学以及与凸起的运动相关性。

Characterizing complex dynamics in the transactivation response element apical loop and motional correlations with the bulge by NMR, molecular dynamics, and mutagenesis.

作者信息

Dethoff Elizabeth A, Hansen Alexandar L, Musselman Catherine, Watt Eric D, Andricioaei Ioan, Al-Hashimi Hashim M

机构信息

Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, USA.

出版信息

Biophys J. 2008 Oct;95(8):3906-15. doi: 10.1529/biophysj.108.140285. Epub 2008 Jul 11.

Abstract

The HIV-1 transactivation response element (TAR) RNA binds a variety of proteins and is a target for developing anti-HIV therapies. TAR has two primary binding sites: a UCU bulge and a CUGGGA apical loop. We used NMR residual dipolar couplings, carbon spin relaxation (R(1) and R(2)), and relaxation dispersion (R(1rho)) in conjunction with molecular dynamics and mutagenesis to characterize the dynamics of the TAR apical loop and investigate previously proposed long-range interactions with the distant bulge. Replacement of the wild-type apical loop with a UUCG loop did not significantly affect the structural dynamics at the bulge, indicating that the apical loop and the bulge act largely as independent dynamical recognition centers. The apical loop undergoes complex dynamics at multiple timescales that are likely important for adaptive recognition: U31 and G33 undergo limited motions, G32 is highly flexible at picosecond-nanosecond timescales, and G34 and C30 form a dynamic Watson-Crick basepair in which G34 and A35 undergo a slow (approximately 30 mus) likely concerted looping in and out motion, with A35 also undergoing large amplitude motions at picosecond-nanosecond timescales. Our study highlights the power of combining NMR, molecular dynamics, and mutagenesis in characterizing RNA dynamics.

摘要

HIV-1反式激活应答元件(TAR)RNA可结合多种蛋白质,是开发抗HIV疗法的一个靶点。TAR有两个主要结合位点:一个UCU凸起和一个CUGGGA顶端环。我们结合分子动力学和诱变技术,利用核磁共振剩余偶极耦合、碳自旋弛豫(R(1)和R(2))以及弛豫色散(R(1rho))来表征TAR顶端环的动力学,并研究先前提出的与远处凸起的长程相互作用。用UUCG环取代野生型顶端环对凸起处的结构动力学没有显著影响,这表明顶端环和凸起在很大程度上作为独立的动态识别中心起作用。顶端环在多个时间尺度上经历复杂的动力学过程,这可能对适应性识别很重要:U31和G33的运动受限,G32在皮秒到纳秒的时间尺度上高度灵活,G34和C30形成一个动态的沃森-克里克碱基对,其中G34和A35经历缓慢(约30微秒)的可能协同的进出环运动,A35在皮秒到纳秒的时间尺度上也经历大幅度运动。我们的研究突出了结合核磁共振、分子动力学和诱变技术在表征RNA动力学方面的作用。

相似文献

2
Domain-elongation NMR spectroscopy yields new insights into RNA dynamics and adaptive recognition.
RNA. 2009 Nov;15(11):1941-8. doi: 10.1261/rna.1806909. Epub 2009 Sep 23.
4
Shortening the HIV-1 TAR RNA Bulge by a Single Nucleotide Preserves Motional Modes over a Broad Range of Time Scales.
Biochemistry. 2016 Aug 16;55(32):4445-56. doi: 10.1021/acs.biochem.6b00285. Epub 2016 Aug 4.
5
Base flexibility in HIV-2 TAR RNA mapped by solution (15)N, (13)C NMR relaxation.
J Mol Biol. 2002 Mar 22;317(2):263-78. doi: 10.1006/jmbi.2001.5424.
7
iRED analysis of TAR RNA reveals motional coupling, long-range correlations, and a dynamical hinge.
Biophys J. 2007 Jul 15;93(2):411-22. doi: 10.1529/biophysj.107.104620. Epub 2007 Apr 20.
10
Tertiary Element Interaction in HIV-1 TAR.
J Chem Inf Model. 2016 Sep 26;56(9):1746-54. doi: 10.1021/acs.jcim.6b00152. Epub 2016 Aug 17.

引用本文的文献

1
Molecular insights into the interaction between a disordered protein and a folded RNA.
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2409139121. doi: 10.1073/pnas.2409139121. Epub 2024 Nov 26.
2
Molecular insights into the interaction between a disordered protein and a folded RNA.
bioRxiv. 2024 Jun 12:2024.06.12.598678. doi: 10.1101/2024.06.12.598678.
3
Dynamics and Function of sRNA/mRNAs Under the Scrutiny of Computational Simulation Methods.
Methods Mol Biol. 2024;2741:207-238. doi: 10.1007/978-1-0716-3565-0_12.
4
An RNA excited conformational state at atomic resolution.
Nat Commun. 2023 Dec 19;14(1):8432. doi: 10.1038/s41467-023-43673-6.
5
Kinetic Resolution of the Atomic 3D Structures Formed by Ground and Excited Conformational States in an RNA Dynamic Ensemble.
J Am Chem Soc. 2023 Oct 25;145(42):22964-22978. doi: 10.1021/jacs.3c04614. Epub 2023 Oct 13.
8
Demonstration that Small Molecules can Bind and Stabilize Low-abundance Short-lived RNA Excited Conformational States.
J Mol Biol. 2020 Feb 14;432(4):1297-1304. doi: 10.1016/j.jmb.2019.12.009. Epub 2019 Dec 18.
9
Exposing Hidden High-Affinity RNA Conformational States.
J Am Chem Soc. 2020 Jan 15;142(2):907-921. doi: 10.1021/jacs.9b10535. Epub 2019 Dec 31.
10
Characterizing micro-to-millisecond chemical exchange in nucleic acids using off-resonance R relaxation dispersion.
Prog Nucl Magn Reson Spectrosc. 2019 Jun-Aug;112-113:55-102. doi: 10.1016/j.pnmrs.2019.05.002. Epub 2019 May 11.

本文引用的文献

1
Role of the 5' TAR stem--loop and the U5-AUG duplex in dimerization of HIV-1 genomic RNA.
Biochemistry. 2008 Mar 11;47(10):3283-93. doi: 10.1021/bi7023173. Epub 2008 Feb 16.
2
Solid-state deuterium NMR studies reveal micros-ns motions in the HIV-1 transactivation response RNA recognition site.
J Am Chem Soc. 2008 Mar 12;130(10):2896-7. doi: 10.1021/ja0778803. Epub 2008 Feb 15.
3
Visualizing spatially correlated dynamics that directs RNA conformational transitions.
Nature. 2007 Dec 20;450(7173):1263-7. doi: 10.1038/nature06389.
4
Dynamics of large elongated RNA by NMR carbon relaxation.
J Am Chem Soc. 2007 Dec 26;129(51):16072-82. doi: 10.1021/ja0757982. Epub 2007 Nov 30.
5
NMR structure of a kissing complex formed between the TAR RNA element of HIV-1 and a LNA-modified aptamer.
Nucleic Acids Res. 2007;35(18):6103-14. doi: 10.1093/nar/gkm655. Epub 2007 Sep 3.
10
iRED analysis of TAR RNA reveals motional coupling, long-range correlations, and a dynamical hinge.
Biophys J. 2007 Jul 15;93(2):411-22. doi: 10.1529/biophysj.107.104620. Epub 2007 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验