Suppr超能文献

基于逆有限元分析的绵羊二尖瓣前叶的体内材料特性

Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis.

作者信息

Krishnamurthy Gaurav, Ennis Daniel B, Itoh Akinobu, Bothe Wolfgang, Swanson Julia C, Karlsson Matts, Kuhl Ellen, Miller D Craig, Ingels Neil B

机构信息

Department of Cardiothoracic Surgery, Stanford University, Stanford, California, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2008 Sep;295(3):H1141-H1149. doi: 10.1152/ajpheart.00284.2008. Epub 2008 Jul 11.

Abstract

We measured leaflet displacements and used inverse finite-element analysis to define, for the first time, the material properties of mitral valve (MV) leaflets in vivo. Sixteen miniature radiopaque markers were sewn to the MV annulus, 16 to the anterior MV leaflet, and 1 on each papillary muscle tip in 17 sheep. Four-dimensional coordinates were obtained from biplane videofluoroscopic marker images (60 frames/s) during three complete cardiac cycles. A finite-element model of the anterior MV leaflet was developed using marker coordinates at the end of isovolumic relaxation (IVR; when the pressure difference across the valve is approximately 0), as the minimum stress reference state. Leaflet displacements were simulated during IVR using measured left ventricular and atrial pressures. The leaflet shear modulus (G(circ-rad)) and elastic moduli in both the commisure-commisure (E(circ)) and radial (E(rad)) directions were obtained using the method of feasible directions to minimize the difference between simulated and measured displacements. Group mean (+/-SD) values (17 animals, 3 heartbeats each, i.e., 51 cardiac cycles) were as follows: G(circ-rad) = 121 +/- 22 N/mm2, E(circ) = 43 +/- 18 N/mm2, and E(rad) = 11 +/- 3 N/mm2 (E(circ) > E(rad), P < 0.01). These values, much greater than those previously reported from in vitro studies, may result from activated neurally controlled contractile tissue within the leaflet that is inactive in excised tissues. This could have important implications, not only to our understanding of mitral valve physiology in the beating heart but for providing additional information to aid the development of more durable tissue-engineered bioprosthetic valves.

摘要

我们测量了瓣叶位移,并首次使用逆向有限元分析来定义体内二尖瓣(MV)瓣叶的材料特性。在17只绵羊中,将16个微型不透射线标记物缝在二尖瓣环上,16个缝在前叶二尖瓣上,每个乳头肌尖端缝1个。在三个完整心动周期内,从双平面视频荧光标记图像(60帧/秒)中获取四维坐标。以前负荷末期(IVR,此时瓣膜两侧压力差约为0)的标记坐标作为最小应力参考状态,建立前叶二尖瓣的有限元模型。使用测得的左心室和心房压力模拟IVR期间的瓣叶位移。使用可行方向法获得瓣叶剪切模量(G(circ-rad))以及瓣叶连合-连合方向(E(circ))和径向(E(rad))的弹性模量,以尽量减少模拟位移与测量位移之间的差异。组均值(±标准差)(17只动物,每只动物3次心跳,即51个心动周期)如下:G(circ-rad)=121±22N/mm2,E(circ)=43±18N/mm2,E(rad)=11±3N/mm2(E(circ)>E(rad),P<0.01)。这些值远高于先前体外研究报道的值,可能是由于瓣叶内被激活的神经控制收缩组织在切除组织中不活跃。这不仅对我们理解跳动心脏中的二尖瓣生理学具有重要意义,而且为开发更耐用的组织工程生物瓣膜提供了额外信息。

相似文献

1
Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis.
Am J Physiol Heart Circ Physiol. 2008 Sep;295(3):H1141-H1149. doi: 10.1152/ajpheart.00284.2008. Epub 2008 Jul 11.
2
Stress-strain behavior of mitral valve leaflets in the beating ovine heart.
J Biomech. 2009 Aug 25;42(12):1909-16. doi: 10.1016/j.jbiomech.2009.05.018. Epub 2009 Jun 16.
3
Regional stiffening of the mitral valve anterior leaflet in the beating ovine heart.
J Biomech. 2009 Dec 11;42(16):2697-701. doi: 10.1016/j.jbiomech.2009.08.028. Epub 2009 Sep 18.
4
Multiple mitral leaflet contractile systems in the beating heart.
J Biomech. 2011 Apr 29;44(7):1328-33. doi: 10.1016/j.jbiomech.2011.01.006. Epub 2011 Feb 2.
5
Vagal nerve stimulation reduces anterior mitral valve leaflet stiffness in the beating ovine heart.
J Biomech. 2012 Jul 26;45(11):2007-13. doi: 10.1016/j.jbiomech.2012.04.009. Epub 2012 Jun 15.
6
Mitral leaflet modeling: Importance of in vivo shape and material properties.
J Biomech. 2011 Aug 11;44(12):2229-35. doi: 10.1016/j.jbiomech.2011.06.005. Epub 2011 Jun 25.
7
Electromechanical coupling between the atria and mitral valve.
Am J Physiol Heart Circ Physiol. 2011 Apr;300(4):H1267-73. doi: 10.1152/ajpheart.00971.2010. Epub 2011 Jan 28.
8
Transient stiffening of mitral valve leaflets in the beating heart.
Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H2221-5. doi: 10.1152/ajpheart.00215.2010. Epub 2010 Apr 16.
10
Anterior mitral leaflet curvature during the cardiac cycle in the normal ovine heart.
Circulation. 2010 Oct 26;122(17):1683-9. doi: 10.1161/CIRCULATIONAHA.110.961243. Epub 2010 Oct 11.

引用本文的文献

1
A noninvasive method for determining elastic parameters of valve tissue using physics-informed neural networks.
Acta Biomater. 2025 Jun 15;200:283-298. doi: 10.1016/j.actbio.2025.05.021. Epub 2025 May 26.
3
FEBio FINESSE: An Open-Source Finite Element Simulation Approach to Estimate In Vivo Heart Valve Strains Using Shape Enforcement.
Ann Biomed Eng. 2025 Jan;53(1):241-259. doi: 10.1007/s10439-024-03637-3. Epub 2024 Nov 5.
4
Atrial functional mitral regurgitation in cardiology and cardiac surgery.
J Thorac Dis. 2024 Aug 31;16(8):5435-5456. doi: 10.21037/jtd-24-189. Epub 2024 Aug 28.
5
Bayesian Optimization-Based Inverse Finite Element Analysis for Atrioventricular Heart Valves.
Ann Biomed Eng. 2024 Mar;52(3):611-626. doi: 10.1007/s10439-023-03408-6. Epub 2023 Nov 21.
8
9
Heart Valve Biomechanics: The Frontiers of Modeling Modalities and the Expansive Capabilities of Heart Simulation.
Front Cardiovasc Med. 2021 Jul 8;8:673689. doi: 10.3389/fcvm.2021.673689. eCollection 2021.
10
Parameterization, geometric modeling, and isogeometric analysis of tricuspid valves.
Comput Methods Appl Mech Eng. 2021 Oct 1;384. doi: 10.1016/j.cma.2021.113960. Epub 2021 Jun 17.

本文引用的文献

1
Finite element analysis of the mitral apparatus: annulus shape effect and chordal force distribution.
Biomech Model Mechanobiol. 2009 Feb;8(1):43-55. doi: 10.1007/s10237-007-0116-8. Epub 2008 Jan 10.
2
A saddle-shaped annulus reduces systolic strain on the central region of the mitral valve anterior leaflet.
J Thorac Cardiovasc Surg. 2007 Dec;134(6):1562-8. doi: 10.1016/j.jtcvs.2007.08.037.
4
Heart valve function: a biomechanical perspective.
Philos Trans R Soc Lond B Biol Sci. 2007 Aug 29;362(1484):1369-91. doi: 10.1098/rstb.2007.2122.
5
Fluid-structure interaction models of the mitral valve: function in normal and pathological states.
Philos Trans R Soc Lond B Biol Sci. 2007 Aug 29;362(1484):1393-406. doi: 10.1098/rstb.2007.2123.
6
Molecular and functional characteristics of heart-valve interstitial cells.
Philos Trans R Soc Lond B Biol Sci. 2007 Aug 29;362(1484):1437-43. doi: 10.1098/rstb.2007.2126.
7
Collagen organization in canine myxomatous mitral valve disease: an x-ray diffraction study.
Biophys J. 2007 Oct 1;93(7):2472-6. doi: 10.1529/biophysj.107.107847. Epub 2007 Jun 8.
8
Distribution of the microelastic properties within the human anterior mitral leaflet.
Ultrasound Med Biol. 2006 Dec;32(12):1943-8. doi: 10.1016/j.ultrasmedbio.2006.06.011.
9
In-vivo dynamic deformation of the mitral valve anterior leaflet.
Ann Thorac Surg. 2006 Oct;82(4):1369-77. doi: 10.1016/j.athoracsur.2006.03.117.
10
Effect of strut chordae transection on mitral valve leaflet biomechanics.
Ann Biomed Eng. 2006 Jun;34(6):917-26. doi: 10.1007/s10439-006-9095-7. Epub 2006 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验