Suppr超能文献

基于贝叶斯优化的房室心脏瓣膜逆有限元分析

Bayesian Optimization-Based Inverse Finite Element Analysis for Atrioventricular Heart Valves.

作者信息

Ross Colton J, Laurence Devin W, Aggarwal Ankush, Hsu Ming-Chen, Mir Arshid, Burkhart Harold M, Lee Chung-Hao

机构信息

Biomechanics & Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK, USA.

Children's Hospital of Philadelphia, Philadelphia, PA, USA.

出版信息

Ann Biomed Eng. 2024 Mar;52(3):611-626. doi: 10.1007/s10439-023-03408-6. Epub 2023 Nov 21.

Abstract

Inverse finite element analysis (iFEA) of the atrioventricular heart valves (AHVs) can provide insights into the in-vivo valvular function, such as in-vivo tissue strains; however, there are several limitations in the current state-of-the-art that iFEA has not been widely employed to predict the in-vivo, patient-specific AHV leaflet mechanical responses. In this exploratory study, we propose the use of Bayesian optimization (BO) to study the AHV functional behaviors in-vivo. We analyzed the efficacy of Bayesian optimization to estimate the isotropic Lee-Sacks material coefficients in three benchmark problems: (i) an inflation test, (ii) a simplified leaflet contact model, and (iii) an idealized AHV model. Then, we applied the developed BO-iFEA framework to predict the leaflet properties for a patient-specific tricuspid valve under a congenital heart defect condition. We found that the BO could accurately construct the objective function surface compared to the one from a [Formula: see text] grid search analysis. Additionally, in all cases the proposed BO-iFEA framework yielded material parameter predictions with average element errors less than 0.02 mm/mm (normalized by the simulation-specific characteristic length). Nonetheless, the solutions were not unique due to the presence of a long-valley minima region in the objective function surfaces. Parameter sets along this valley can yield functionally equivalent outcomes (i.e., closing behavior) and are typically observed in the inverse analysis or parameter estimation for the nonlinear mechanical responses of the AHV. In this study, our key contributions include: (i) a first-of-its-kind demonstration of the BO method used for the AHV iFEA; and (ii) the evaluation of a candidate AHV in-silico modeling approach wherein the chordae could be substituted with equivalent displacement boundary conditions, rendering the better iFEA convergence and a smoother objective surface.

摘要

房室心脏瓣膜(AHV)的逆有限元分析(iFEA)可以深入了解体内瓣膜功能,例如体内组织应变;然而,当前的技术水平存在一些局限性,iFEA尚未被广泛用于预测体内患者特异性AHV瓣叶的机械反应。在这项探索性研究中,我们提出使用贝叶斯优化(BO)来研究AHV的体内功能行为。我们在三个基准问题中分析了贝叶斯优化估计各向同性Lee-Sacks材料系数的有效性:(i)膨胀试验,(ii)简化的瓣叶接触模型,以及(iii)理想化的AHV模型。然后,我们应用开发的BO-iFEA框架来预测先天性心脏缺陷条件下患者特异性三尖瓣的瓣叶特性。我们发现,与[公式:见正文]网格搜索分析相比,BO可以准确构建目标函数曲面。此外,在所有情况下,所提出的BO-iFEA框架产生的材料参数预测的平均单元误差小于0.02 mm/mm(通过模拟特定特征长度归一化)。尽管如此,由于目标函数曲面中存在长谷极小值区域,解不是唯一的。沿着这个山谷的参数集可以产生功能等效的结果(即关闭行为),并且通常在AHV非线性机械响应的逆分析或参数估计中观察到。在本研究中,我们的主要贡献包括:(i)首次展示用于AHV iFEA的BO方法;以及(ii)评估一种候选的AHV计算机模拟建模方法,其中腱索可以用等效位移边界条件代替,从而实现更好的iFEA收敛和更平滑的目标曲面。

相似文献

1
Bayesian Optimization-Based Inverse Finite Element Analysis for Atrioventricular Heart Valves.
Ann Biomed Eng. 2024 Mar;52(3):611-626. doi: 10.1007/s10439-023-03408-6. Epub 2023 Nov 21.
2
An investigation of layer-specific tissue biomechanics of porcine atrioventricular valve anterior leaflets.
Acta Biomater. 2019 Sep 15;96:368-384. doi: 10.1016/j.actbio.2019.06.049. Epub 2019 Jun 29.
3
FEBio FINESSE: An Open-Source Finite Element Simulation Approach to Estimate In Vivo Heart Valve Strains Using Shape Enforcement.
Ann Biomed Eng. 2025 Jan;53(1):241-259. doi: 10.1007/s10439-024-03637-3. Epub 2024 Nov 5.
5
Mechanics of Porcine Heart Valves' Strut Chordae Tendineae Investigated as a Leaflet-Chordae-Papillary Muscle Entity.
Ann Biomed Eng. 2020 May;48(5):1463-1474. doi: 10.1007/s10439-020-02464-6. Epub 2020 Jan 31.
6
Characterization of three-dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis.
J Mech Behav Biomed Mater. 2016 Sep;62:33-44. doi: 10.1016/j.jmbbm.2016.04.031. Epub 2016 Apr 30.
7
Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.
Med Eng Phys. 2009 Nov;31(9):1110-7. doi: 10.1016/j.medengphy.2009.07.012. Epub 2009 Sep 20.
8
Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation.
J Mech Behav Biomed Mater. 2023 Apr;140:105708. doi: 10.1016/j.jmbbm.2023.105708. Epub 2023 Feb 3.
9
An investigation of the anisotropic mechanical properties and anatomical structure of porcine atrioventricular heart valves.
J Mech Behav Biomed Mater. 2018 Nov;87:155-171. doi: 10.1016/j.jmbbm.2018.07.024. Epub 2018 Jul 18.

本文引用的文献

1
A Bayesian constitutive model selection framework for biaxial mechanical testing of planar soft tissues: Application to porcine aortic valves.
J Mech Behav Biomed Mater. 2023 Feb;138:105657. doi: 10.1016/j.jmbbm.2023.105657. Epub 2023 Jan 5.
2
A pilot investigation of the tricuspid valve annulus in newborns with hypoplastic left heart syndrome.
JTCVS Open. 2022 Jun;10:324-339. doi: 10.1016/j.xjon.2022.02.015. Epub 2022 Feb 24.
4
Bayesian optimisation for efficient parameter inference in a cardiac mechanics model of the left ventricle.
Int J Numer Method Biomed Eng. 2022 May;38(5):e3593. doi: 10.1002/cnm.3593. Epub 2022 Apr 7.
6
An benchmark for the tricuspid heart valve - Geometry, finite element mesh, Abaqus simulation, and result data set.
Data Brief. 2021 Dec 2;39:107664. doi: 10.1016/j.dib.2021.107664. eCollection 2021 Dec.
8
Characterization of Exercise-Induced Myocardium Growth Using Finite Element Modeling and Bayesian Optimization.
Front Physiol. 2021 Aug 9;12:694940. doi: 10.3389/fphys.2021.694940. eCollection 2021.
9
Parameterization, geometric modeling, and isogeometric analysis of tricuspid valves.
Comput Methods Appl Mech Eng. 2021 Oct 1;384. doi: 10.1016/j.cma.2021.113960. Epub 2021 Jun 17.
10
Pre-surgical Prediction of Ischemic Mitral Regurgitation Recurrence Using In Vivo Mitral Valve Leaflet Strains.
Ann Biomed Eng. 2021 Dec;49(12):3711-3723. doi: 10.1007/s10439-021-02772-5. Epub 2021 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验