Suppr超能文献

翅脉中断蛋白中的一种独特保护信号可防止其被蛋白酶体完全降解。

A unique protection signal in Cubitus interruptus prevents its complete proteasomal degradation.

作者信息

Wang Yifei, Price Mary Ann

机构信息

Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.

出版信息

Mol Cell Biol. 2008 Sep;28(18):5555-68. doi: 10.1128/MCB.00524-08. Epub 2008 Jul 14.

Abstract

The limited proteolysis of Cubitus interruptus (Ci), the transcription factor for the developmentally and medically important Hedgehog (Hh) signaling pathway, triggers a critical switch between transcriptional repressor and activator forms. Ci repressor is formed when the C terminus of full-length Ci is degraded by the ubiquitin-proteasome pathway, an unusual reaction since the proteasome typically completely degrades its substrates. We show that several regions of Ci are required for generation of the repressor form: the zinc finger DNA binding domain, a single lysine residue (K750) near the degradation end point, and a 163-amino-acid region at the C terminus. Unlike other proteins that are partially degraded by the proteasome, dimerization is not a key feature of Ci processing. Using a pulse-chase assay in cultured Drosophila cells, we distinguish between regions required for initiation of degradation and those required for the protection of the Ci N terminus from degradation. We present a model whereby the zinc finger region and K750 together form a unique protection signal that prevents the complete degradation of Ci by the proteasome.

摘要

肘脉中断蛋白(Ci)是发育和医学上重要的刺猬信号通路(Hh)的转录因子,其有限的蛋白水解作用引发了转录抑制因子和激活因子形式之间的关键转换。当全长Ci的C末端通过泛素-蛋白酶体途径降解时,Ci阻遏物形成,这是一种不寻常的反应,因为蛋白酶体通常会完全降解其底物。我们发现Ci的几个区域对于阻遏物形式的产生是必需的:锌指DNA结合结构域、降解终点附近的单个赖氨酸残基(K750)以及C末端的一个163个氨基酸的区域。与其他被蛋白酶体部分降解的蛋白质不同,二聚化不是Ci加工的关键特征。通过在培养的果蝇细胞中进行脉冲追踪分析,我们区分了降解起始所需的区域和保护Ci N末端不被降解所需的区域。我们提出了一个模型,其中锌指区域和K750共同形成一个独特的保护信号,可防止蛋白酶体完全降解Ci。

相似文献

1
A unique protection signal in Cubitus interruptus prevents its complete proteasomal degradation.
Mol Cell Biol. 2008 Sep;28(18):5555-68. doi: 10.1128/MCB.00524-08. Epub 2008 Jul 14.
2
Costal 2 interactions with Cubitus interruptus (Ci) underlying Hedgehog-regulated Ci processing.
Dev Biol. 2010 Dec 1;348(1):47-57. doi: 10.1016/j.ydbio.2010.09.004. Epub 2010 Sep 17.
3
Hedgehog-induced phosphorylation by CK1 sustains the activity of Ci/Gli activator.
Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):E5651-60. doi: 10.1073/pnas.1416652111. Epub 2014 Dec 15.
4
hedgehog can act as a morphogen in the absence of regulated Ci processing.
Elife. 2020 Oct 21;9:e61083. doi: 10.7554/eLife.61083.
6
In vivo RNAi screen reveals neddylation genes as novel regulators of Hedgehog signaling.
PLoS One. 2011;6(9):e24168. doi: 10.1371/journal.pone.0024168. Epub 2011 Sep 8.
7
Ter94 ATPase complex targets k11-linked ubiquitinated ci to proteasomes for partial degradation.
Dev Cell. 2013 Jun 24;25(6):636-44. doi: 10.1016/j.devcel.2013.05.006. Epub 2013 Jun 6.
8
9
Decoding Ci: from partial degradation to inhibition.
Dev Growth Differ. 2015 Feb;57(2):98-108. doi: 10.1111/dgd.12187. Epub 2014 Dec 14.
10
Casein kinase 2 promotes Hedgehog signaling by regulating both smoothened and Cubitus interruptus.
J Biol Chem. 2010 Nov 26;285(48):37218-26. doi: 10.1074/jbc.M110.174565. Epub 2010 Sep 27.

引用本文的文献

1
From the Evasion of Degradation to Ubiquitin-Dependent Protein Stabilization.
Cells. 2021 Sep 9;10(9):2374. doi: 10.3390/cells10092374.
2
hedgehog can act as a morphogen in the absence of regulated Ci processing.
Elife. 2020 Oct 21;9:e61083. doi: 10.7554/eLife.61083.
3
Proteostasis in the Hedgehog signaling pathway.
Semin Cell Dev Biol. 2019 Sep;93:153-163. doi: 10.1016/j.semcdb.2018.10.009. Epub 2018 Nov 14.
4
The 26S proteasome and initiation of gene transcription.
Biomolecules. 2014 Sep 10;4(3):827-47. doi: 10.3390/biom4030827.
5
Hyperplastic discs differentially regulates the transcriptional outputs of hedgehog signaling.
Mech Dev. 2014 Aug;133:117-25. doi: 10.1016/j.mod.2014.05.002. Epub 2014 May 20.
6
Decoding the phosphorylation code in Hedgehog signal transduction.
Cell Res. 2013 Feb;23(2):186-200. doi: 10.1038/cr.2013.10. Epub 2013 Jan 22.
7
The Hedgehog signal transduction network.
Sci Signal. 2012 Oct 16;5(246):re6. doi: 10.1126/scisignal.2002906.
9
In vivo RNAi screen reveals neddylation genes as novel regulators of Hedgehog signaling.
PLoS One. 2011;6(9):e24168. doi: 10.1371/journal.pone.0024168. Epub 2011 Sep 8.
10
A three-part signal governs differential processing of Gli1 and Gli3 proteins by the proteasome.
J Biol Chem. 2011 Nov 11;286(45):39051-8. doi: 10.1074/jbc.M111.274993. Epub 2011 Sep 15.

本文引用的文献

3
A novel protein-processing domain in Gli2 and Gli3 differentially blocks complete protein degradation by the proteasome.
J Biol Chem. 2007 Apr 13;282(15):10846-52. doi: 10.1074/jbc.M608599200. Epub 2007 Feb 5.
4
Targeting the Hedgehog pathway in cancer.
Nat Rev Drug Discov. 2006 Dec;5(12):1026-33. doi: 10.1038/nrd2086.
6
8
Roadkill attenuates Hedgehog responses through degradation of Cubitus interruptus.
Development. 2006 May;133(10):2001-10. doi: 10.1242/dev.02370.
9
CG15031/PPYR1 is an intrinsically unstructured protein that interacts with protein phosphatase Y.
Arch Biochem Biophys. 2006 Jul 1;451(1):59-67. doi: 10.1016/j.abb.2006.03.020. Epub 2006 Apr 5.
10
Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation.
Mol Cell Biol. 2006 May;26(9):3365-77. doi: 10.1128/MCB.26.9.3365-3377.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验