Suppr超能文献

基于微阵列分类的小样本问题。

Small sample issues for microarray-based classification.

作者信息

Dougherty E R

机构信息

Department of Electrical Engineering, Texas A&M University, College Station, TX 77843-3128, USA.

出版信息

Comp Funct Genomics. 2001;2(1):28-34. doi: 10.1002/cfg.62.

Abstract

In order to study the molecular biological differences between normal and diseased tissues, it is desirable to perform classification among diseases and stages of disease using microarray-based gene-expression values. Owing to the limited number of microarrays typically used in these studies, serious issues arise with respect to the design, performance and analysis of classifiers based on microarray data. This paper reviews some fundamental issues facing small-sample classification: classification rules, constrained classifiers, error estimation and feature selection. It discusses both unconstrained and constrained classifier design from sample data, and the contributions to classifier error from constrained optimization and lack of optimality owing to design from sample data. The difficulty with estimating classifier error when confined to small samples is addressed, particularly estimating the error from training data. The impact of small samples on the ability to include more than a few variables as classifier features is explained.

摘要

为了研究正常组织与病变组织之间的分子生物学差异,期望利用基于微阵列的基因表达值对疾病及其疾病阶段进行分类。由于这些研究中通常使用的微阵列数量有限,基于微阵列数据的分类器在设计、性能和分析方面出现了严重问题。本文综述了小样本分类面临的一些基本问题:分类规则、受限分类器、误差估计和特征选择。它讨论了基于样本数据的无约束和受限分类器设计,以及受限优化对分类器误差的贡献,以及由于基于样本数据进行设计而导致的缺乏最优性。文中讨论了在限于小样本时估计分类器误差的困难,特别是从训练数据估计误差。解释了小样本对将多个变量作为分类器特征的能力的影响。

相似文献

引用本文的文献

7
Gene selection for cancer classification with the help of bees.借助蜜蜂进行癌症分类的基因选择
BMC Med Genomics. 2016 Aug 10;9 Suppl 2(Suppl 2):47. doi: 10.1186/s12920-016-0204-7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验