Suppr超能文献

用于带纹理图像去噪的非线性正则化反应扩散滤波器

Nonlinear regularized reaction-diffusion filters for denoising of images with textures.

作者信息

Plonka Gerlind, Ma Jianwei

机构信息

Department of Mathematics, University of Duisburg-Essen, Campus Duisburg, Duisburg, Germany.

出版信息

IEEE Trans Image Process. 2008 Aug;17(8):1283-94. doi: 10.1109/TIP.2008.925305.

Abstract

Denoising is always a challenging problem in natural imaging and geophysical data processing. In this paper, we consider the denoising of texture images using a nonlinear reaction-diffusion equation and directional wavelet frames. In our model, a curvelet shrinkage is used for regularization of the diffusion process to preserve important features in the diffusion smoothing and a wave atom shrinkage is used as the reaction in order to preserve and enhance interesting oriented textures. We derive a digital reaction-diffusion filter that lives on graphs and show convergence of the corresponding iteration process. Experimental results and comparisons show very good performance of the proposed model for texture-preserving denoising.

摘要

去噪在自然成像和地球物理数据处理中一直是一个具有挑战性的问题。在本文中,我们考虑使用非线性反应扩散方程和方向小波框架对纹理图像进行去噪。在我们的模型中,使用曲波收缩对扩散过程进行正则化,以在扩散平滑中保留重要特征,并使用波原子收缩作为反应,以保留和增强有趣的定向纹理。我们推导了一种基于图的数字反应扩散滤波器,并证明了相应迭代过程的收敛性。实验结果和比较表明,所提出的模型在保留纹理的去噪方面具有非常好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验