Suppr超能文献

在甲基孢囊菌属菌株SC2中发现了两种具有不同甲烷氧化动力学的颗粒性甲烷单加氧酶同工酶。

Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2.

作者信息

Baani Mohamed, Liesack Werner

机构信息

Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, Marburg, Germany.

出版信息

Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10203-8. doi: 10.1073/pnas.0702643105. Epub 2008 Jul 15.

Abstract

Methane-oxidizing bacteria (methanotrophs) attenuate methane emission from major sources, such as wetlands, rice paddies, and landfills, and constitute the only biological sink for atmospheric methane in upland soils. Their key enzyme is particulate methane monooxygenase (pMMO), which converts methane to methanol. It has long been believed that methane at the trace atmospheric mixing ratio of 1.75 parts per million by volume (ppmv) is not oxidized by the methanotrophs cultured to date, but rather only by some uncultured methanotrophs, and that type I and type II methanotrophs contain a single type of pMMO. Here, we show that the type II methanotroph Methylocystis sp. strain SC2 possesses two pMMO isozymes with different methane oxidation kinetics. The pmoCAB1 genes encoding the known type of pMMO (pMMO1) are expressed and pMMO1 oxidizes methane only at mixing ratios >600 ppmv. The pmoCAB2 genes encoding pMMO2, in contrast, are constitutively expressed, and pMMO2 oxidizes methane at lower mixing ratios, even at the trace level of atmospheric methane. Wild-type strain SC2 and mutants expressing pmoCAB2 but defective in pmoCAB1 consumed atmospheric methane for >3 months. Growth occurred at 10-100 ppmv methane. Most type II but no type I methanotrophs possess the pmoCAB2 genes. The apparent K(m) of pMMO2 (0.11 muM) in strain SC2 corresponds well with the K(m(app)) values for methane oxidation measured in soils that consume atmospheric methane, thereby explaining why these soils are dominated by type II methanotrophs, and some by Methylocystis spp., in particular. These findings change our concept of methanotroph ecology.

摘要

甲烷氧化细菌(甲烷营养菌)可减少来自湿地、稻田和垃圾填埋场等主要来源的甲烷排放,并且是旱地土壤中大气甲烷的唯一生物汇。它们的关键酶是颗粒性甲烷单加氧酶(pMMO),可将甲烷转化为甲醇。长期以来,人们一直认为,在大气中痕量混合比为百万分之1.75体积比(ppmv)的甲烷不会被迄今培养的甲烷营养菌氧化,而仅被一些未培养的甲烷营养菌氧化,并且I型和II型甲烷营养菌仅含有单一类型的pMMO。在此,我们表明II型甲烷营养菌甲基孢囊菌属菌株SC2拥有两种具有不同甲烷氧化动力学的pMMO同工酶。编码已知类型pMMO(pMMO1)的pmoCAB1基因表达,且pMMO1仅在混合比>600 ppmv时氧化甲烷。相比之下,编码pMMO2的pmoCAB2基因组成性表达,并且pMMO2在较低混合比下氧化甲烷,甚至在大气甲烷的痕量水平下也是如此。野生型菌株SC2和表达pmoCAB2但pmoCAB1有缺陷的突变体消耗大气甲烷超过3个月。在10 - 100 ppmv的甲烷浓度下生长。大多数II型但没有I型甲烷营养菌拥有pmoCAB2基因。菌株SC2中pMMO2的表观K(m)(0.11 μM)与消耗大气甲烷的土壤中测量的甲烷氧化K(m(app))值非常吻合,从而解释了为什么这些土壤中以II型甲烷营养菌为主,特别是一些以甲基孢囊菌属为主。这些发现改变了我们对甲烷营养菌生态学的概念。

相似文献

引用本文的文献

8
A methanotrophic bacterium to enable methane removal for climate mitigation.一种能够去除甲烷以缓解气候变化的产甲烷菌。
Proc Natl Acad Sci U S A. 2023 Aug 29;120(35):e2310046120. doi: 10.1073/pnas.2310046120. Epub 2023 Aug 21.
9
Asparagine Uptake: a Cellular Strategy of to Combat Severe Salt Stress.天冬酰胺摄取:应对严重盐胁迫的细胞策略。
Appl Environ Microbiol. 2023 Jun 28;89(6):e0011323. doi: 10.1128/aem.00113-23. Epub 2023 May 15.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验