Gladilin E, Goetze S, Mateos-Langerak J, VAN Driel R, Eils R, Rohr K
German Cancer Research Centre, Theoretical Bioinformatics, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany.
J Microsc. 2008 Jul;231(Pt 1):105-14. doi: 10.1111/j.1365-2818.2008.02021.x.
Topological analysis of cells and subcellular structures on the basis of image data, is one of the major trends in modern quantitative biology. However, due to the dynamic nature of cell biology, the optical appearance of different cells or even time-series of the same cell is undergoing substantial variations in shape and texture, which makes a comparison of shapes and distances across different cells a nontrivial task. In the absence of canonical invariances, a natural approach to the normalization of cells consists of spherical mapping, enabling the analysis of targeted regions in terms of canonical spherical coordinates, that is, radial distances and angles. In this work, we present a physically-based approach to spherical mapping, which has been applied for topological analysis of multichannel confocal laser scanning microscopy images of human fibroblast nuclei. Our experimental results demonstrate that spherical mapping of entire nuclear domains can automatically be obtained by inverting affine and elastic transformations, performed on a spherical finite element template mesh.
基于图像数据对细胞和亚细胞结构进行拓扑分析,是现代定量生物学的主要趋势之一。然而,由于细胞生物学的动态特性,不同细胞甚至同一细胞的时间序列的光学外观在形状和纹理上都有很大变化,这使得比较不同细胞的形状和距离成为一项艰巨的任务。在缺乏规范不变性的情况下,一种自然的细胞归一化方法是球面映射,它能够根据规范的球坐标,即径向距离和角度,对目标区域进行分析。在这项工作中,我们提出了一种基于物理的球面映射方法,该方法已应用于人类成纤维细胞核的多通道共聚焦激光扫描显微镜图像的拓扑分析。我们的实验结果表明,通过对球形有限元模板网格进行仿射和弹性变换的逆变换,可以自动获得整个核区域的球面映射。