Suppr超能文献

使用半监督度量学习识别核表型。

Identifying nuclear phenotypes using semi-supervised metric learning.

作者信息

Singh Shantanu, Janoos Firdaus, Pécot Thierry, Caserta Enrico, Leone Gustavo, Rittscher Jens, Machiraju Raghu

机构信息

Dept. of Computer Science and Engg., The Ohio State University, USA.

出版信息

Inf Process Med Imaging. 2011;22:398-410. doi: 10.1007/978-3-642-22092-0_33.

Abstract

In systems-based approaches for studying processes such as cancer and development, identifying and characterizing individual cells within a tissue is the first step towards understanding the large-scale effects that emerge from the interactions between cells. To this end, nuclear morphology is an important phenotype to characterize the physiological and differentiated state of a cell. This study focuses on using nuclear morphology to identify cellular phenotypes in thick tissue sections imaged using 3D fluorescence microscopy. The limited label information, heterogeneous feature set describing a nucleus, and existence of subpopulations within cell-types makes this a difficult learning problem. To address these issues, a technique is presented to learn a distance metric from labeled data which is locally adaptive to account for heterogeneity in the data. Additionally, a label propagation technique is used to improve the quality of the learned metric by expanding the training set using unlabeled data. Results are presented on images of tumor stroma in breast cancer, where the framework is used to identify fibroblasts, macrophages and endothelial cells--three major stromal cells involved in carcinogenesis.

摘要

在基于系统的方法中,用于研究诸如癌症和发育等过程时,识别和表征组织内的单个细胞是理解细胞间相互作用所产生的大规模效应的第一步。为此,核形态是表征细胞生理和分化状态的重要表型。本研究聚焦于利用核形态在使用三维荧光显微镜成像的厚组织切片中识别细胞表型。有限的标记信息、描述细胞核的异质特征集以及细胞类型内亚群的存在使得这成为一个困难的学习问题。为解决这些问题,提出了一种从标记数据中学习距离度量的技术,该度量在局部具有适应性以考虑数据中的异质性。此外,使用标签传播技术通过利用未标记数据扩展训练集来提高所学习度量的质量。给出了乳腺癌肿瘤基质图像的结果,其中该框架用于识别成纤维细胞、巨噬细胞和内皮细胞——参与致癌作用的三种主要基质细胞。

相似文献

1
Identifying nuclear phenotypes using semi-supervised metric learning.使用半监督度量学习识别核表型。
Inf Process Med Imaging. 2011;22:398-410. doi: 10.1007/978-3-642-22092-0_33.
3
Cells tracking in a live zebrafish embryo.活斑马鱼胚胎中的细胞追踪
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:1631-4. doi: 10.1109/IEMBS.2007.4352619.
4
6
An optimal transportation approach for nuclear structure-based pathology.基于核结构的病理学最优传输方法。
IEEE Trans Med Imaging. 2011 Mar;30(3):621-31. doi: 10.1109/TMI.2010.2089693. Epub 2010 Oct 25.
9
Agreement-based semi-supervised learning for skull stripping.基于协议的颅骨剥离半监督学习
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):147-54. doi: 10.1007/978-3-642-15711-0_19.
10
3D dendrite reconstruction and spine identification.3D树突重建与棘突识别
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):18-26. doi: 10.1007/978-3-540-85990-1_3.

引用本文的文献

本文引用的文献

3
Characterizing heterogeneous cellular responses to perturbations.表征细胞对扰动的异质性反应。
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19306-11. doi: 10.1073/pnas.0807038105. Epub 2008 Dec 3.
6
Imaging in systems biology.系统生物学中的成像技术。
Cell. 2007 Sep 7;130(5):784-95. doi: 10.1016/j.cell.2007.08.031.
7
Fluorescence microscopy.荧光显微镜术
Nat Methods. 2005 Dec;2(12):910-9. doi: 10.1038/nmeth817.
8
A guide to choosing fluorescent proteins.荧光蛋白选择指南。
Nat Methods. 2005 Dec;2(12):905-9. doi: 10.1038/nmeth819.
9
Nuclear structure in cancer cells.癌细胞中的核结构。
Nat Rev Cancer. 2004 Sep;4(9):677-87. doi: 10.1038/nrc1430.
10
Putting tumours in context.结合背景看待肿瘤。
Nat Rev Cancer. 2001 Oct;1(1):46-54. doi: 10.1038/35094059.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验