Bjelke Jais R, Olsen Ole H, Fodje Michel, Svensson L Anders, Bang Susanne, Bolt Gert, Kragelund Birthe B, Persson Egon
Department of Protein Structure and Biophysics, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark.
J Biol Chem. 2008 Sep 19;283(38):25863-70. doi: 10.1074/jbc.M800841200. Epub 2008 Jul 17.
The intrinsic activity of coagulation factor VIIa (FVIIa) is dependent on Ca(2+) binding to a loop (residues 210-220) in the protease domain. Structural analysis revealed that Ca(2+) may enhance the activity by attenuating electrostatic repulsion of Glu(296) and/or by facilitating interactions between the loop and Lys(161) in the N-terminal tail. In support of the first mechanism, the mutations E296V and D212N resulted in similar, about 2-fold, enhancements of the amidolytic activity. Moreover, mutation of the Lys(161)-interactive residue Asp(217) or Asp(219) to Ala reduced the amidolytic activity by 40-50%, whereas the K161A mutation resulted in 80% reduction. Hence one of these Asp residues in the Ca(2+)-binding loop appears to suffice for some residual interaction with Lys(161), whereas the more severe effect upon replacement of Lys(161) is due to abrogation of the interaction with the N-terminal tail. However, Ca(2+) attenuation of the repulsion between Asp(212) and Glu(296) keeps the activity above that of apoFVIIa. Altogether, our data suggest that repulsion involving Asp(212) in the Ca(2+)-binding loop suppresses FVIIa activity and that optimal activity requires a favorable interaction between the Ca(2+)-binding loop and the N-terminal tail. Crystal structures of tissue factor-bound FVIIa(D212N) and FVIIa(V158D/E296V/M298Q) revealed altered hydrogen bond networks, resembling those in factor Xa and thrombin, after introduction of the D212N and E296V mutations plausibly responsible for tethering the N-terminal tail to the activation domain. The charge repulsion between the Ca(2+)-binding loop and the activation domain appeared to be either relieved by charge removal and new hydrogen bonds (D212N) or abolished (E296V). We propose that Ca(2+) stimulates the intrinsic FVIIa activity by a combination of charge neutralization and loop stabilization.
凝血因子VIIa(FVIIa)的内在活性取决于钙离子(Ca(2+))与蛋白酶结构域中的一个环(残基210 - 220)结合。结构分析表明,Ca(2+)可能通过减弱Glu(296)的静电排斥作用和/或促进该环与N端尾巴中的Lys(161)之间的相互作用来增强活性。支持第一种机制的是,E296V和D212N突变导致酰胺水解活性有相似的约2倍增强。此外,将与Lys(161)相互作用的残基Asp(217)或Asp(219)突变为Ala会使酰胺水解活性降低40 - 50%,而K161A突变则导致80%的降低。因此,Ca(2+)结合环中的这些Asp残基之一似乎足以与Lys(161)进行一些残余相互作用,而替换Lys(161)时产生更严重影响是由于与N端尾巴的相互作用被消除。然而,Ca(2+)减弱Asp(212)和Glu(296)之间的排斥作用使活性高于脱辅基FVIIa。总之,我们的数据表明,Ca(2+)结合环中涉及Asp(212)的排斥作用抑制了FVIIa活性,而最佳活性需要Ca(2+)结合环与N端尾巴之间有良好的相互作用。组织因子结合的FVIIa(D212N)和FVIIa(V158D/E296V/M298Q)的晶体结构显示,在引入可能负责将N端尾巴拴系到激活结构域的D212N和E296V突变后,氢键网络发生了改变,类似于因子Xa和凝血酶中的氢键网络。Ca(2+)结合环与激活结构域之间的电荷排斥似乎通过电荷去除和新的氢键(D212N)得到缓解或被消除(E296V)。我们提出,Ca(2+)通过电荷中和与环稳定的组合来刺激FVIIa的内在活性。