Wang Hui-Fang, Liu Zhi-Pan
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, China 200433.
J Am Chem Soc. 2008 Aug 20;130(33):10996-1004. doi: 10.1021/ja801648h. Epub 2008 Jul 22.
Ethanol oxidation on Pt is a typical multistep and multiselectivity heterogeneous catalytic process. A comprehensive understanding of this fundamental reaction would greatly benefit design of catalysts for use in direct ethanol fuel cells and the degradation of biomass-derived oxygenates. In this work, the reaction network of ethanol oxidation on different Pt surfaces, including close-packed Pt{111}, stepped Pt{211}, and open Pt{100}, is explored thoroughly with an efficient reaction path searching method, which integrates our new transition-state searching technique with periodic density functional theory calculations. Our new technique enables the location of the transition state and saddle points for most surface reactions simply and efficiently by optimization of local minima. We show that the selectivity of ethanol oxidation on Pt depends markedly on the surface structure, which can be attributed to the structure-sensitivity of two key reaction steps: (i) the initial dehydrogenation of ethanol and (ii) the oxidation of acetyl (CH3CO). On open surface sites, ethanol prefers C-C bond cleavage via strongly adsorbed intermediates (CH2CO or CHCO), which leads to complete oxidation to CO2. However, only partial oxidizations to CH3CHO and CH3COOH occur on Pt{111}. Our mechanism points out that the open surface Pt{100} is the best facet to fully oxidize ethanol at low coverages, which sheds light on the origin of the remarkable catalytic performance of Pt tetrahexahedra nanocrystals found recently. The physical origin of the structure-selectivity is rationalized in terms of both thermodynamics and kinetics. Two fundamental quantities that dictate the selectivity of ethanol oxidation are identified: (i) the ability of surface metal atoms to bond with unsaturated C-containing fragments and (ii) the relative stability of hydroxyl at surface atop sites with respect to other sites.
乙醇在铂上的氧化是一个典型的多步骤、多选择性的非均相催化过程。全面理解这一基本反应将极大地有助于设计用于直接乙醇燃料电池的催化剂以及生物质衍生含氧化合物的降解。在这项工作中,我们采用一种高效的反应路径搜索方法,将新的过渡态搜索技术与周期性密度泛函理论计算相结合,深入探究了乙醇在不同铂表面(包括密排的Pt{111}、阶梯状的Pt{211}和开放的Pt{100})上的反应网络。我们的新技术通过优化局部极小值,能够简单而高效地确定大多数表面反应的过渡态和鞍点。我们表明,乙醇在铂上的氧化选择性显著取决于表面结构,这可归因于两个关键反应步骤的结构敏感性:(i)乙醇的初始脱氢和(ii)乙酰基(CH3CO)的氧化。在开放表面位点上,乙醇倾向于通过强吸附中间体(CH2CO或CHCO)进行C-C键断裂,这导致完全氧化为CO2。然而,在Pt{111}上仅发生部分氧化生成CH3CHO和CH3COOH。我们的机理指出,开放表面的Pt{1(}00{)}是在低覆盖度下将乙醇完全氧化的最佳晶面,这揭示了最近发现的铂四面体纳米晶体卓越催化性能的起源。从热力学和动力学角度对结构选择性的物理起源进行了合理化解释。确定了决定乙醇氧化选择性的两个基本量:(i)表面金属原子与含不饱和C片段结合的能力和(ii)表面顶位上羟基相对于其他位点的相对稳定性。