Durani Susheel
Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India.
Acc Chem Res. 2008 Oct;41(10):1301-8. doi: 10.1021/ar700265t. Epub 2008 Jul 22.
Summarizing the implications of homochiral structures in interpeptide interactions, not only in the topology but also possibly in the physics of protein folding, this Account provides an overview of the concept of shape-specific protein design using D- and L-(alpha)amino acid structures as the alphabet. The molecular shapes accessible in de novo protein design are stereochemically defined. Indeed, the defining consideration for shape specificity in proteins to be alpha-helix/beta-sheet composites is the L configuration of the alpha-amino acid structures. The stereospecificity in shapes implies that protein shapes may be diversifiable stereochemically, that is, designable de novo, using D and L structures as the alphabet. Indeed, augmented with D enantiomers, Nature's alphabet will expand greatly in the diversity of polypeptide stereoisomers, for example, from 1(30) to 2(30)--that is, from one to ca. one billion--for a modestly sized 30-residue polypeptide. Furthermore, with each isomer having conformers stereospecific to its structure, molecular folds of specific shapes may be approachable sequentially when D and L structures are used as the alphabet. Illustrating the promise, 14-20-residue bracelet-, boat-, canoe-, and cup-shaped molecular folds were designed stereochemically or implemented as specific sequence plans in the D- and L-alpha-amino acid alphabet. In practical terms, canonical poly-L peptide folds were modified to the desired shapes via stereochemical mutations invoking enantiomer symmetries in the Ramachandran phi,psi space as the logic. For example, in designing the boat-shaped fold, the canonical beta-hairpin was reengineered in its flat planar structure via multiple coordinated L-to-D mutations in its position specific cross-strand neighbor residues, upturning its ends enclosing six side chains in a molecular cleft. While affirming the generality of the approach, the 20-residue molecular canoe and the 14-residue molecular cup are also presented as examples of the scope of functional design. The canoe, possessing alkali cation-specific catgrips in its main chain, and the cup, featuring an organic cation-specific aromatic triad in its side chains, do indeed display desired specificities in their ligand binding. Stereochemistry is, therefore, the crucial specifier of protein shapes and valuable as the tool for shape-specific protein design. Proteins in general, whether poly-L or mixed-D,L, require sequence effects of amino acid side chain structures for their stability, if not also for specifying them conformationally. The principles underlying these phenomena remain a puzzle, but studies invoking a stereochemical mutation approach to the problem have suggested that the poly-L structure may be crucial to the principles of sequential encoding of protein structures in amino acid side chains as the alphabet.
本综述阐述了同手性结构在肽间相互作用中的意义,不仅涉及拓扑结构,还可能与蛋白质折叠的物理过程相关。本文概述了使用D-和L-α-氨基酸结构作为字母表进行形状特异性蛋白质设计的概念。从头设计蛋白质时可获得的分子形状是由立体化学定义的。实际上,对于α-螺旋/β-折叠复合的蛋白质,形状特异性的决定性因素是α-氨基酸结构的L构型。形状的立体特异性意味着蛋白质形状可以通过立体化学方式多样化,即可以从头设计,使用D型和L型结构作为字母表。事实上,加入D型对映体后,自然界的字母表在多肽立体异构体的多样性方面将大大扩展,例如,对于一个适度大小的30个残基的多肽,从1(30)增加到2(30),即从一种增加到约十亿种。此外,由于每种异构体都有与其结构立体特异性相关的构象,当使用D型和L型结构作为字母表时,特定形状的分子折叠可能会依次实现。为说明这一前景,设计了14 - 20个残基的手镯状、船状、独木舟状和杯状分子折叠,或以D-和L-α-氨基酸字母表中的特定序列计划实现。实际上,通过在拉氏构象图的φ、ψ空间中调用对映体对称性作为逻辑的立体化学突变,将典型的聚-L肽折叠修饰成所需形状。例如,在设计船状折叠时,通过在其位置特异性跨链相邻残基中进行多次协同的L到D突变,对典型的β-发夹结构的扁平平面结构进行了重新设计,使其两端向上弯曲,在分子裂缝中包围六个侧链。在肯定该方法通用性的同时,还展示了20个残基的分子独木舟和14个残基的分子杯作为功能设计范围的示例。独木舟在其主链中具有碱金属阳离子特异性的抓握结构,而杯状分子在其侧链中具有有机阳离子特异性的芳香三联体,它们在配体结合中确实表现出所需的特异性。因此立体化学是蛋白质形状的关键决定因素,也是形状特异性蛋白质设计的宝贵工具。一般来说,蛋白质无论是聚-L型还是混合D、L型,即使不是为了确定其构象,其稳定性也需要氨基酸侧链结构的序列效应。这些现象背后的原理仍然是个谜,但通过立体化学突变方法对该问题进行的研究表明,聚-L结构可能对以氨基酸侧链作为字母表对蛋白质结构进行顺序编码的原理至关重要。