Cruz Hidalgo Raúl, Pagonabarraga Ignacio
AMADE, Departament de Física, Departament de Enginyeria Mecànica i de la Construcció Industrial, Universitat de Girona, Avenida Montilivi s/n, Girona, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jun;77(6 Pt 1):061305. doi: 10.1103/PhysRevE.77.061305. Epub 2008 Jun 19.
The dynamics of homogeneously heated granular gases which fragment due to particle collisions is analyzed. We introduce a kinetic model which accounts for correlations induced at the grain collisions and analyze both the kinetics and relevant distribution functions these systems develop. The work combines analytical and numerical studies based on direct simulation Monte Carlo calculations. A broad family of fragmentation probabilities is considered, and its implications for the system kinetics are discussed. We show that generically these driven materials evolve asymptotically into a dynamical scaling regime. If the fragmentation probability tends to a constant, the grain number diverges at a finite time, leading to a shattering singularity. If the fragmentation probability vanishes, then the number of grains grows monotonously as a power law. We consider different homogeneous thermostats and show that the kinetics of these systems depends weakly on both the grain inelasticity and driving. We observe that fragmentation plays a relevant role in the shape of the velocity distribution of the particles. When the fragmentation is driven by local stochastic events, the long velocity tail is essentially exponential independently of the heating frequency and the breaking rule. However, for a Lowe-Andersen thermostat, numerical evidence strongly supports the conjecture that the scaled velocity distribution follows a generalized exponential behavior f(c) approximately exp(-cn) , with n approximately 1.2 , regarding less the fragmentation mechanisms.
分析了因粒子碰撞而破碎的均匀加热颗粒气体的动力学。我们引入了一个动力学模型,该模型考虑了颗粒碰撞时产生的相关性,并分析了这些系统发展的动力学和相关分布函数。这项工作结合了基于直接模拟蒙特卡罗计算的解析和数值研究。考虑了广泛的破碎概率族,并讨论了其对系统动力学的影响。我们表明,一般来说,这些受驱动的材料渐近地演化为动态标度 regime。如果破碎概率趋于常数,颗粒数在有限时间内发散,导致破碎奇点。如果破碎概率消失,那么颗粒数将作为幂律单调增长。我们考虑了不同的均匀恒温器,并表明这些系统的动力学对颗粒非弹性和驱动的依赖性都很弱。我们观察到破碎在颗粒速度分布的形状中起相关作用。当破碎由局部随机事件驱动时,长速度尾基本上是指数的,与加热频率和破碎规则无关。然而,对于洛厄-安德森恒温器,数值证据有力地支持了这样的猜想:标度速度分布遵循广义指数行为 f(c)≈exp(-cn),其中 n≈1.2,与破碎机制关系较小。