Romero-Arias J R, Naumis Gerardo G
Instituto de Física, Deptartamento de Física-Quimica, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Distrito Federal, Mexico.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jun;77(6 Pt 1):061504. doi: 10.1103/PhysRevE.77.061504. Epub 2008 Jun 5.
Glasses exist because they are not able to relax in a laboratory time scale toward the most stable structure: a crystal. At the same time, glasses present low-frequency vibrational-mode (LFVM) anomalies. We explore in a systematic way how the number of such modes influences thermal relaxation in one-dimensional models of glasses. The model is a Fermi-Pasta-Ulam chain with nonlinear springs that join second neighbors at random, which mimics the adding of bond constraints in the rigidity theory of glasses. The corresponding number of LFVMs decreases linearly with the concentration of these springs, and thus their effect upon thermal relaxation can be studied in a systematic way. To do so, we performed numerical simulations using lattices that were thermalized and afterwards placed in contact with a zero-temperature bath. The results indicate that the time required for thermal relaxation has two contributions: one depends on the number of LFVMs and the other on the localization of modes due to disorder. By removing LFVMs, relaxation becomes less efficient since the cascade mechanism that transfers energy between modes is stopped. On the other hand, normal-mode localization also increases the time required for relaxation. We prove this last point by comparing periodic and nonperiodic chains that have the same number of LFVMs.
玻璃之所以存在,是因为它们无法在实验室时间尺度内弛豫到最稳定的结构:晶体。与此同时,玻璃呈现出低频振动模式(LFVM)异常。我们系统地探究了此类模式的数量如何影响玻璃一维模型中的热弛豫。该模型是一个费米 - 帕斯塔 - 乌拉姆链,带有随机连接次近邻的非线性弹簧,这模拟了玻璃刚性理论中键约束的添加。相应的LFVM数量随这些弹簧的浓度呈线性下降,因此可以系统地研究它们对热弛豫的影响。为此,我们使用经过热化处理后与零温浴接触的晶格进行了数值模拟。结果表明,热弛豫所需的时间有两个贡献:一个取决于LFVM的数量,另一个取决于由于无序导致的模式局域化。通过去除LFVM,弛豫效率降低,因为在模式之间传递能量的级联机制停止了。另一方面,正常模式局域化也增加了弛豫所需的时间。我们通过比较具有相同数量LFVM的周期链和非周期链来证明最后这一点。