Howden Benjamin P, Stinear Timothy P, Allen David L, Johnson Paul D R, Ward Peter B, Davies John K
Department of Microbiology, Monash University, Wellington Rd., Clayton, Victoria, Australia.
Antimicrob Agents Chemother. 2008 Oct;52(10):3755-62. doi: 10.1128/AAC.01613-07. Epub 2008 Jul 21.
Methicillin-resistant Staphylococcus aureus (MRSA), once restricted to hospitals, is spreading rapidly through the wider community. Resistance to vancomycin, the principal drug used to treat MRSA infections, has only recently emerged, is mainly low level, and characteristically appears during vancomycin therapy (vancomycin-intermediate S. aureus [VISA] and hetero-resistant VISA). This phenomenon suggests the adaptation of MRSA through mutation, although defining the mutations leading to resistance in clinical isolates has been difficult. We studied a vancomycin-susceptible clinical MRSA isolate (MIC of 1 microg/ml) and compared it with an isogenic blood culture isolate from the same patient, despite 42 days of vancomycin treatment (MIC of 4 microg/ml). A whole-genome sequencing approach allowed the nearly complete assembly of the genome sequences of the two isolates and revealed only six nucleotide substitutions in the VISA strain compared with the parent strain. One mutation occurred in graS, encoding a putative two-component regulatory sensor, leading to a change from a polar to a nonpolar amino acid (T136I) in the conserved histidine region of the predicted protein. Replacing the graS allele of the vancomycin-susceptible parent strain with the graS allele from the VISA derivative resulted in increased vancomycin resistance at a level between those of the vancomycin-susceptible S. aureus and VISA clinical isolates, confirming a role for graRS in VISA. Our study suggests that MRSA is able to develop clinically significant vancomycin resistance via a single point mutation, and the two-component regulatory system graRS is a key mediator of this resistance. However, additional mutations are likely required to express the full VISA phenotype.
耐甲氧西林金黄色葡萄球菌(MRSA)曾一度局限于医院,如今正迅速在更广泛的社区中传播。对用于治疗MRSA感染的主要药物万古霉素的耐药性直到最近才出现,主要为低水平耐药,且特征性地出现在万古霉素治疗期间(万古霉素中介金黄色葡萄球菌[VISA]和异质性耐药VISA)。这种现象提示MRSA通过突变发生了适应性变化,尽管确定临床分离株中导致耐药的突变一直很困难。我们研究了一株对万古霉素敏感的临床MRSA分离株(最低抑菌浓度[MIC]为1微克/毫升),并将其与同一患者经42天万古霉素治疗后的同源血培养分离株(MIC为4微克/毫升)进行比较。全基因组测序方法使我们能够近乎完整地组装这两个分离株的基因组序列,结果显示与亲本菌株相比,VISA菌株仅出现了6个核苷酸替换。其中一个突变发生在graS基因中,该基因编码一种假定的双组分调节传感器,导致预测蛋白保守组氨酸区域中的一个氨基酸从极性变为非极性(T136I)。用VISA衍生株的graS等位基因替换万古霉素敏感亲本菌株的graS等位基因,导致万古霉素耐药性增加,其水平介于万古霉素敏感金黄色葡萄球菌和VISA临床分离株之间,证实了graRS在VISA中的作用。我们的研究表明,MRSA能够通过单点突变产生具有临床意义的万古霉素耐药性;双组分调节系统graRS是这种耐药性的关键介导因素。然而,可能还需要其他突变才能表达完整的VISA表型。