Garipcan B, Winters J, Atchison J S, Cathell M D, Schiffman J D, Leaffer O D, Nonnenmann S S, Schauer C L, Pişkin E, Nabet B, Spanier J E
Department of Chemical Engineering, Bioengineering Division, Hacettepe University, Beytepe, Ankara, Turkey.
Langmuir. 2008 Aug 19;24(16):8944-9. doi: 10.1021/la800911x. Epub 2008 Jul 23.
We report on the nanopatterning of double-bond-terminated silane (5-hexenyltrichlorosilane, HTCS) molecules on titania (TiO2) using conductive atomic force microscopy (AFM). The influences of tip electrostatic potential and scanning velocity, relative humidity and of the repeated application of voltage on the topographic height, width, and hydrophilic and hydrophobic contrast of the resultant patterns were investigated. Tip voltage and tip velocity ( v) were applied between -10 V <or= V tip <or= +10 V and 100 nm/s <or= v <or= 2 microm/s during the lithography step(s), respectively. Average height and Lateral Force Mode (LFM) images of patterns were obtained with different values of (-10 V <or= V tip <or= -7 V) and v (100 nm/s <or= v <or= 2 microm/s). The average height of the patterns is seen to decrease for increasing v and decreasing V tip in both a single or repeated lithography step. No patterns were observed following a single or repeated lithography step for -5 V <or= V tip <or= +10 V. This conductive lithography technique results in nanoscale physiochemical manipulations of the HTCS molecules that are manifested as controllable step heights ranging from approximately 1-15 nm possessing different chemistries on the patterned and unpatterned areas. The use of conductive-AFM nanolithography for altering and manipulating double-bond-terminated molecules on TiO2 surfaces suggests a range of applications, including selective immobilization and assembly of functionalized inorganic nanoparticles and biomolecules.
我们报道了使用导电原子力显微镜(AFM)在二氧化钛(TiO₂)上对双键封端的硅烷(5-己烯基三氯硅烷,HTCS)分子进行纳米图案化的研究。研究了针尖静电势、扫描速度、相对湿度以及重复施加电压对所得图案的形貌高度、宽度以及亲水和疏水对比度的影响。在光刻步骤中,分别在-10 V≤V针尖≤+10 V和100 nm/s≤v≤2 µm/s之间施加针尖电压和针尖速度(v)。用不同的V针尖值(-10 V≤V针尖≤-7 V)和v值(100 nm/s≤v≤2 µm/s)获得图案的平均高度和横向力模式(LFM)图像。在单次或重复光刻步骤中,都可以看到图案的平均高度随着v的增加和V针尖的减小而降低。对于-5 V≤V针尖≤+10 V,在单次或重复光刻步骤后未观察到图案。这种导电光刻技术导致了HTCS分子的纳米级物理化学操纵,表现为在图案化和未图案化区域具有不同化学性质的可控台阶高度,范围约为1 - 15 nm。使用导电AFM纳米光刻技术在TiO₂表面改变和操纵双键封端的分子,显示出一系列应用,包括功能化无机纳米颗粒和生物分子的选择性固定和组装。