Suppr超能文献

关于直达声与混响声能量比的最小可听差异。

On the minimum audible difference in direct-to-reverberant energy ratio.

作者信息

Larsen Erik, Iyer Nandini, Lansing Charissa R, Feng Albert S

机构信息

Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

出版信息

J Acoust Soc Am. 2008 Jul;124(1):450-61. doi: 10.1121/1.2936368.

Abstract

The goals of this study were to measure sensitivity to the direct-to-reverberant energy ratio (D/R) across a wide range of D/R values and to gain insight into which cues are used in the discrimination process. The main finding is that changes in D/R are discriminated primarily based on spectral cues. Temporal cues may be used but only when spectral cues are diminished or not available, while sensitivity to interaural cross-correlation is too low to be useful in any of the conditions tested. These findings are based on an acoustic analysis of these variables and the results of two psychophysical experiments. The first experiment employs wideband noise with two values for onset and offset times to determine the D/R just-noticeable difference at -10, 0, 10, and 20 dB D/R. This yielded substantially higher sensitivity to D/R at 0 and 10 dB D/R (2-3 dB) than has been reported previously, while sensitivity is much lower at -10 and 20 dB D/R. The second experiment consists of three parts where specific cues to D/R are reduced or removed, which enabled the specified rank ordering of the cues. The acoustic analysis and psychophysical experiments also provide an explanation for the "auditory horizon effect."

摘要

本研究的目标是测量在广泛的直达声与混响声能量比(D/R)值范围内对其的敏感度,并深入了解在辨别过程中使用了哪些线索。主要发现是,D/R的变化主要基于频谱线索进行辨别。时间线索可能会被使用,但仅在频谱线索减弱或不可用时,而双耳互相关的敏感度太低,在任何测试条件下都无用。这些发现基于对这些变量的声学分析以及两个心理物理学实验的结果。第一个实验采用具有两种起始和结束时间值的宽带噪声,以确定在-10、0、10和20 dB D/R时的D/R刚可察觉差异。这在0和10 dB D/R(2 - 3 dB)时对D/R的敏感度比之前报道的要高得多,而在-10和20 dB D/R时敏感度则低得多。第二个实验由三个部分组成,其中对D/R的特定线索被减少或去除,这使得能够对线索进行指定的排序。声学分析和心理物理学实验也为“听觉地平线效应”提供了解释。

相似文献

1
On the minimum audible difference in direct-to-reverberant energy ratio.
J Acoust Soc Am. 2008 Jul;124(1):450-61. doi: 10.1121/1.2936368.
2
Direct-to-reverberant energy ratio sensitivity.
J Acoust Soc Am. 2002 Nov;112(5 Pt 1):2110-7. doi: 10.1121/1.1506692.
4
Electrophysiological and psychophysical asymmetries in sensitivity to interaural correlation steps.
Hear Res. 2009 Oct;256(1-2):39-57. doi: 10.1016/j.heares.2009.06.010. Epub 2009 Jun 23.
7
Auditory sensitivity to spectral modulation phase reversal as a function of modulation depth.
PLoS One. 2018 Apr 5;13(4):e0195686. doi: 10.1371/journal.pone.0195686. eCollection 2018.
8
Localizing nearby sound sources in a classroom: binaural room impulse responses.
J Acoust Soc Am. 2005 May;117(5):3100-15. doi: 10.1121/1.1872572.
9
Acoustic cues underlying auditory distance in barn owls.
Acta Otolaryngol. 2008 Apr;128(4):382-7. doi: 10.1080/00016480701840114.
10
Psychophysical performance and Mandarin tone recognition in noise by cochlear implant users.
Ear Hear. 2007 Apr;28(2 Suppl):62S-65S. doi: 10.1097/AUD.0b013e318031512c.

引用本文的文献

1
Adaptation to Reverberation for Speech Perception: A Systematic Review.
Trends Hear. 2024 Jan-Dec;28:23312165241273399. doi: 10.1177/23312165241273399.
3
Binaural Modelling and Spatial Auditory Cue Analysis of 3D-Printed Ears.
Sensors (Basel). 2021 Jan 1;21(1):227. doi: 10.3390/s21010227.
4
Impact of face masks on voice radiation.
J Acoust Soc Am. 2020 Dec;148(6):3663. doi: 10.1121/10.0002853.
5
Cortical auditory distance representation based on direct-to-reverberant energy ratio.
Neuroimage. 2020 Mar;208:116436. doi: 10.1016/j.neuroimage.2019.116436. Epub 2019 Dec 3.
6
Brainstem-cortical functional connectivity for speech is differentially challenged by noise and reverberation.
Hear Res. 2018 Sep;367:149-160. doi: 10.1016/j.heares.2018.05.018. Epub 2018 May 26.
7
Effects of Varying Reverberation on Music Perception for Young Normal-Hearing and Old Hearing-Impaired Listeners.
Trends Hear. 2018 Jan-Dec;22:2331216517750706. doi: 10.1177/2331216517750706.
8
Sound Spectrum Influences Auditory Distance Perception of Sound Sources Located in a Room Environment.
Front Psychol. 2017 Jun 22;8:969. doi: 10.3389/fpsyg.2017.00969. eCollection 2017.
9
Hearing Scenes: A Neuromagnetic Signature of Auditory Source and Reverberant Space Separation.
eNeuro. 2017 Mar 1;4(1). doi: 10.1523/ENEURO.0007-17.2017. eCollection 2017 Jan-Feb.
10
Auditory distance perception in humans: a review of cues, development, neuronal bases, and effects of sensory loss.
Atten Percept Psychophys. 2016 Feb;78(2):373-95. doi: 10.3758/s13414-015-1015-1.

本文引用的文献

1
Slant from texture and disparity cues: optimal cue combination.
J Vis. 2004 Dec 1;4(12):967-92. doi: 10.1167/4.12.1.
2
Convergence as a cue to absolute distance.
Rep US Army Med Res Lab. 1961 May 17;467:1-16.
3
Direct-to-reverberant energy ratio sensitivity.
J Acoust Soc Am. 2002 Nov;112(5 Pt 1):2110-7. doi: 10.1121/1.1506692.
4
Detection of static and dynamic changes in interaural correlation.
J Acoust Soc Am. 2002 Oct;112(4):1617-26. doi: 10.1121/1.1504857.
5
Knowledge about typical source output influences perceived auditory distance.
J Acoust Soc Am. 2002 May;111(5 Pt 1):1980-3. doi: 10.1121/1.1471899.
6
Assessing auditory distance perception using virtual acoustics.
J Acoust Soc Am. 2002 Apr;111(4):1832-46. doi: 10.1121/1.1458027.
7
Humans integrate visual and haptic information in a statistically optimal fashion.
Nature. 2002 Jan 24;415(6870):429-33. doi: 10.1038/415429a.
8
Auditory localization of nearby sources. III. Stimulus effects.
J Acoust Soc Am. 1999 Dec;106(6):3589-602. doi: 10.1121/1.428212.
9
Touch can change visual slant perception.
Nat Neurosci. 2000 Jan;3(1):69-73. doi: 10.1038/71140.
10
Auditory localization of nearby sources. II. Localization of a broadband source.
J Acoust Soc Am. 1999 Oct;106(4 Pt 1):1956-68. doi: 10.1121/1.427943.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验