Khorasani Reza Rajaie, Dumont Randall S
Department of Chemistry, McMaster University, 1280 Main St. W. Hamilton, Ontario L8S 4M1, Canada.
J Chem Phys. 2008 Jul 21;129(3):034110. doi: 10.1063/1.2940733.
This article presents a new complex absorbing potential (CAP) block Lanczos method for computing scattering eigenfunctions and reaction probabilities. The method reduces the problem of computing energy eigenfunctions to solving two energy dependent systems of equations. An energy independent block Lanczos factorization casts the system into a block tridiagonal form, which can be solved very efficiently for all energies. We show that CAP-Lanczos methods exhibit instability due to the non-normality of CAP Hamiltonians and may break down for some systems. The instability is not due to loss of orthogonality but to non-normality of the Hamiltonian matrix. While use of a Woods-Saxon exponential CAP-as opposed to a polynomial CAP-reduced non-normality, it did not always ensure convergence. Our results indicate that the Arnoldi algorithm is more robust for non-normal systems and less prone to break down. An Arnoldi version of our method is applied to a nonadiabatic tunneling Hamiltonian with excellent results, while the Lanczos algorithm breaks down for this system.
本文提出了一种用于计算散射本征函数和反应概率的新型复吸收势(CAP)块 Lanczos 方法。该方法将计算能量本征函数的问题简化为求解两个与能量相关的方程组。一个与能量无关的块 Lanczos 分解将系统转化为块三对角形式,对于所有能量都能非常有效地求解。我们表明,由于 CAP 哈密顿量的非正规性,CAP-Lanczos 方法表现出不稳定性,并且可能在某些系统中失效。这种不稳定性不是由于正交性的丧失,而是由于哈密顿矩阵的非正规性。虽然使用 Woods-Saxon 指数 CAP(与多项式 CAP 相对)减少了非正规性,但它并不总是能确保收敛。我们的结果表明,Arnoldi 算法对于非正规系统更稳健,更不容易失效。我们方法的 Arnoldi 版本应用于一个非绝热隧穿哈密顿量,取得了优异的结果,而 Lanczos 算法在此系统中失效。