Suppr超能文献

过渡金属氢化物中氢-1和碳-13核磁共振化学位移的密度泛函理论计算

DFT calculations of 1H and 13C NMR chemical shifts in transition metal hydrides.

作者信息

del Rosal I, Maron L, Poteau R, Jolibois F

机构信息

Université de Toulouse, INSA, UPS, CNRS, LPCNO, 135 avenue de Rangueil, F-31077, Toulouse, France.

出版信息

Dalton Trans. 2008 Aug 14(30):3959-70. doi: 10.1039/b802190b. Epub 2008 May 7.

Abstract

Transition metal hydrides are of great interest in chemistry because of their reactivity and their potential use as catalysts for hydrogenation. Among other available techniques, structural properties in transition metal (TM) complexes are often probed by NMR spectroscopy. In this paper we will show that it is possible to establish a viable methodological strategy in the context of density functional theory, that allows the determination of 1H NMR chemical shifts of hydride ligands attached to transition metal atoms in mononuclear systems and clusters with good accuracy with respect to experiment. 13C chemical shifts have also been considered in some cases. We have studied mononuclear ruthenium complexes such as Ru(L)(H)(dppm)2 with L = H or Cl, cationic complex [Ru(H)(H2O)(dppm)2]+ and Ru(H)2(dppm)(PPh3)2, in which hydride ligands are characterized by a negative 1H NMR chemical shift. For these complexes all calculations are in relatively good agreement compared to experimental data with errors not exceeding 20% except for the hydrogen atom in Ru(H)2(dppm)(PPh3)2. For this last complex, the relative error increases to 30%, probably owing to the necessity to take into account dynamical effects of phenyl groups. Carbonyl ligands are often encountered in coordination chemistry. Specific issues arise when calculating 1H or 13C NMR chemical shifts in TM carbonyl complexes. Indeed, while errors of 10 to 20% with respect to experiment are often considered good in the framework of density functional theory, this difference in the case of mononuclear carbonyl complexes culminates to 80%: results obtained with all-electron calculations are overall in very satisfactory agreement with experiment, the error in this case does not exceed 11% contrary to effective core potentials (ECPs) calculations which yield errors always larger than 20%. We conclude that for carbonyl groups the use of ECPs is not recommended, although their use could save time for very large systems, for instance in cluster chemistry. The reliance of NMR chemical shielding on dynamical effects, such as intramolecular rearrangements or trigonal twists, is also examined for H2Fe(CO)4, K+HFe(CO), HMn(CO)5 and HRe(CO)5. The accuracy of the theory is also examined for complexes with two dihydrogen ligands (Tp*RuH(H2)2 and [FeH(H2)(DMPE)2]+) and a ruthenium cluster, [H3Ru4(C6H6)4(CO)]+. It is shown that for all complexes studied in this work, the effect of the ligands on the chemical shielding of hydrogen coordinated to metal is suitably calculated, thus yielding a very good correlation between experimental chemical shifts and theoretical chemical shielding.

摘要

过渡金属氢化物因其反应活性以及作为氢化催化剂的潜在用途而在化学领域备受关注。在其他可用技术中,过渡金属(TM)配合物的结构性质通常通过核磁共振光谱法进行探测。在本文中,我们将表明,在密度泛函理论的背景下,可以建立一种可行的方法策略,该策略能够以相对于实验而言较高的准确度确定单核体系和簇合物中与过渡金属原子相连的氢化物配体的(^1H)核磁共振化学位移。在某些情况下,还考虑了(^{13}C)化学位移。我们研究了单核钌配合物,如(L = H)或(Cl)时的(Ru(L)(H)(dppm)_2)、阳离子配合物([Ru(H)(H_2O)(dppm)_2]^+)以及(Ru(H)_2(dppm)(PPh_3)_2),其中氢化物配体的特征是具有负的(^1H)核磁共振化学位移。对于这些配合物,除了(Ru(H)_2(dppm)(PPh_3)_2)中的氢原子外,所有计算结果与实验数据相比相对吻合较好,误差不超过(20%)。对于最后一种配合物,相对误差增加到(30%),这可能是由于需要考虑苯基的动态效应。羰基配体在配位化学中经常遇到。在计算TM羰基配合物的(^1H)或(^{13}C)核磁共振化学位移时会出现一些特定问题。实际上,虽然在密度泛函理论框架内,相对于实验(10%)到(20%)的误差通常被认为是良好的,但在单核羰基配合物的情况下,这种差异高达(80%):全电子计算得到的结果总体上与实验非常吻合,在这种情况下误差不超过(11%),而有效核势(ECP)计算产生的误差总是大于(20%)。我们得出结论,对于羰基,不建议使用ECP,尽管对于非常大的体系,例如在簇化学中,使用它们可以节省时间。还对(H_2Fe(CO)_4)、(K^+[HFe(CO)]^-)、(HMn(CO)_5)和(HRe(CO)_5)研究了核磁共振化学屏蔽对动态效应(如分子内重排或三角扭转)的依赖性。还对具有两个二氢配体((Tp*RuH(H_2)_2)和([FeH(H_2)(DMPE)_2]^+))的配合物以及一个钌簇合物([H_3Ru_4(C_6H_6)_4(CO)]^+)检验了该理论的准确性。结果表明,对于本文研究的所有配合物,配体对与金属配位的氢的化学屏蔽的影响都得到了适当的计算,从而在实验化学位移和理论化学屏蔽之间产生了非常好的相关性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验