Suppr超能文献

鞍点近似、积分差分方程与入侵

Saddle-point approximations, integrodifference equations, and invasions.

作者信息

Kot Mark, Neubert Michael G

机构信息

Department of Applied Mathematics, University of Washington, Box 352420, Seattle, WA 98195-2420, USA,

出版信息

Bull Math Biol. 2008 Aug;70(6):1790-826. doi: 10.1007/s11538-008-9325-2. Epub 2008 Jul 22.

Abstract

Invasion, the growth in numbers and spatial spread of a population over time, is a fundamental process in ecology. Governments and businesses expend vast sums to prevent and control invasions of pests and pestilences and to promote invasions of endangered species and biological control agents. Many mathematical models of biological invasions use nonlinear integrodifference equations to describe the growth and dispersal processes and to predict the speed of invasion fronts. Linear models have received less attention, perhaps because they are difficult to simulate for large times. In this paper, we use the saddle-point method, alias the method of steepest descent, to derive asymptotic approximations for the solutions of linear integrodifference equations. We work through five examples, for Gaussian, Laplace, and uniform dispersal kernels in one dimension and for asymmetric Gaussian and radially symmetric Laplace kernels in two dimensions. Our approximations are extremely close to the exact solutions, even for intermediate times. We also employ an empirical saddle-point approximation to predict densities using dispersal data. We use our approximations to examine the effects of censored dispersal data on estimates of invasion speed and population density.

摘要

入侵,即种群数量随时间的增长以及空间扩散,是生态学中的一个基本过程。政府和企业花费巨额资金来预防和控制害虫及疫病的入侵,并促进濒危物种和生物防治剂的引入。许多生物入侵的数学模型使用非线性积分差分方程来描述生长和扩散过程,并预测入侵前沿的速度。线性模型受到的关注较少,可能是因为长时间模拟它们很困难。在本文中,我们使用鞍点法,即最速下降法,来推导线性积分差分方程解的渐近近似。我们研究了五个例子,分别是一维的高斯、拉普拉斯和均匀扩散核,以及二维的非对称高斯和径向对称拉普拉斯核。即使对于中间时间,我们的近似也与精确解极其接近。我们还采用经验鞍点近似,利用扩散数据来预测密度。我们用我们的近似来研究删失扩散数据对入侵速度和种群密度估计的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验