Suppr超能文献

用于描述入侵的分层时空矩阵模型。

Hierarchical spatiotemporal matrix models for characterizing invasions.

作者信息

Hooten Mevin B, Wikle Christopher K, Dorazio Robert M, Royle J Andrew

机构信息

Department of Mathematics and Statistics, Utah State University, Logan, Utah 84322-3900, USA.

出版信息

Biometrics. 2007 Jun;63(2):558-67. doi: 10.1111/j.1541-0420.2006.00725.x.

Abstract

The growth and dispersal of biotic organisms is an important subject in ecology. Ecologists are able to accurately describe survival and fecundity in plant and animal populations and have developed quantitative approaches to study the dynamics of dispersal and population size. Of particular interest are the dynamics of invasive species. Such nonindigenous animals and plants can levy significant impacts on native biotic communities. Effective models for relative abundance have been developed; however, a better understanding of the dynamics of actual population size (as opposed to relative abundance) in an invasion would be beneficial to all branches of ecology. In this article, we adopt a hierarchical Bayesian framework for modeling the invasion of such species while addressing the discrete nature of the data and uncertainty associated with the probability of detection. The nonlinear dynamics between discrete time points are intuitively modeled through an embedded deterministic population model with density-dependent growth and dispersal components. Additionally, we illustrate the importance of accommodating spatially varying dispersal rates. The method is applied to the specific case of the Eurasian Collared-Dove, an invasive species at mid-invasion in the United States at the time of this writing.

摘要

生物有机体的生长和扩散是生态学中的一个重要课题。生态学家能够准确描述动植物种群的生存和繁殖能力,并已开发出定量方法来研究扩散动态和种群规模。特别令人感兴趣的是入侵物种的动态。这类非本土动植物会对本地生物群落产生重大影响。已经开发出了关于相对丰度的有效模型;然而,更好地理解入侵过程中实际种群规模(相对于相对丰度)的动态,将对生态学的各个分支都有益处。在本文中,我们采用分层贝叶斯框架来模拟此类物种的入侵,同时处理数据的离散性质以及与检测概率相关的不确定性。通过一个具有密度依赖生长和扩散成分的嵌入式确定性种群模型,直观地对离散时间点之间的非线性动态进行建模。此外,我们说明了考虑空间变化扩散率的重要性。该方法应用于欧亚领鸽的具体案例,在撰写本文时,它是美国处于入侵中期的一个入侵物种。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验