Suppr超能文献

Inhibition of axonal development after injection of neurofilament antibodies into a Xenopus laevis embryo.

作者信息

Szaro B G, Grant P, Lee V M, Gainer H

机构信息

Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892.

出版信息

J Comp Neurol. 1991 Jun 22;308(4):576-85. doi: 10.1002/cne.903080406.

Abstract

The ability to target specific cytoskeletal components in axons for disruption within intact developing embryos would provide a valuable tool for studying neuronal development. Neurofilaments are an attractive target for such an approach, because they are neuron specific and are expressed late in embryogenesis principally beginning during axon outgrowth. No pharmacological agents are currently available that disrupt neurofilaments without also affecting general development. One approach that has been used successfully to affect proteins in vivo is to inject specific antibodies into living cells. We employed this approach in Xenopus laevis embryos by injecting two antibodies directed against the middle molecular weight neurofilament protein (NF-M) into a single blastomere of a two-cell stage embryo. Injected antibodies could be detected for as long as 3.5 days in cells descended from the injected blastomere. Only cell bodies of neurons descended from anti-NF-M-injected blastomeres contained abnormal accumulations of intermediate filament proteins, and peripheral nerve development was unilaterally retarded in these neurofilament antibody-injected tadpoles. Such accumulations and peripheral nerve defects were not seen in neurons derived from uninjected blastomeres or from blastomeres injected with control antibodies. These data demonstrate the usefulness of specific antibodies to perturb neuronal development in intact frog embryos and, in addition, suggest a role for neurofilaments in axon elongation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验