Gossens Christian, Tavernelli Ivano, Rothlisberger Ursula
Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
J Am Chem Soc. 2008 Aug 20;130(33):10921-8. doi: 10.1021/ja800194a. Epub 2008 Jul 24.
Organometallic ruthenium(II)-arene (RA) compounds combine a rich structural diversity with the potential to overcome existing chemotherapeutic limitations. In particular, the two classes of compounds [Ru(II)(eta(6)-arene)X(en)] and [Ru(II)(eta(6)-arene)(X)2(pta)] (RA-en and RA-pta, respectively; X = leaving group, en = ethylenediamine, pta = 1,3,5-triaza-7-phosphaadamantane) have become the focus of recent anticancer research. In vitro and in vivo studies have shown that they exhibit promising new activity profiles, for which their interactions with DNA are suspected to be a crucial factor. In the present study, we investigate the binding processes of monofunctional RA-en and bifunctional RA-pta to double-stranded DNA and characterize the resulting structural perturbations by means of ab initio and classical molecular dynamics simulations. We find that both RA complexes bind easily through their ruthenium center to the N7 atom of guanine bases. The high flexibility of DNA allows for fast accommodation of the ruthenium complexes into the major groove. Once bound to the host, however, the two complexes induce different DNA structural distortions. Strain induced in the DNA backbone from RA-en complexation is released by a local break of a Watson-Crick base-pair, consistent with the experimentally observed local denaturation. The bulkier RA-pta, on the other hand, bends the DNA helix toward its major groove, resembling the characteristic DNA distortion induced by the classic anticancer drug cisplatin. The atomistic details of the interactions of RA complexes with DNA gained in the present study shed light on some of the anticancer properties of these compounds and should assist future rational compound design.
有机金属钌(II)-芳烃(RA)化合物兼具丰富的结构多样性以及克服现有化疗局限性的潜力。特别地,两类化合物[Ru(II)(η⁶-芳烃)X(乙二胺)]和[Ru(II)(η⁶-芳烃)(X)₂(1,3,5-三氮杂-7-磷杂金刚烷)](分别为RA-乙二胺和RA-1,3,5-三氮杂-7-磷杂金刚烷;X = 离去基团,乙二胺 = 乙二胺,1,3,5-三氮杂-7-磷杂金刚烷 = 1,3,5-三氮杂-7-磷杂金刚烷)已成为近期抗癌研究的焦点。体外和体内研究表明,它们展现出有前景的新活性特征,据推测其与DNA的相互作用是一个关键因素。在本研究中,我们研究了单功能RA-乙二胺和双功能RA-1,3,5-三氮杂-7-磷杂金刚烷与双链DNA的结合过程,并通过从头算和经典分子动力学模拟对由此产生的结构扰动进行了表征。我们发现,两种RA配合物都通过其钌中心轻松地与鸟嘌呤碱基的N7原子结合。DNA的高柔韧性使得钌配合物能够快速进入大沟。然而,一旦与宿主结合,这两种配合物会诱导不同的DNA结构畸变。由RA-乙二胺络合在DNA主链中诱导的应变通过沃森-克里克碱基对的局部断裂得以释放,这与实验观察到的局部变性一致。另一方面,体积更大的RA-1,3,5-三氮杂-7-磷杂金刚烷使DNA螺旋向其大沟弯曲,类似于经典抗癌药物顺铂诱导的特征性DNA畸变。本研究中获得的RA配合物与DNA相互作用的原子细节揭示了这些化合物的一些抗癌特性,并应有助于未来合理的化合物设计。