Straight Stephen D, Kodis Gerdenis, Terazono Yuichi, Hambourger Michael, Moore Thomas A, Moore Ana L, Gust Devens
Nat Nanotechnol. 2008 May;3(5):280-3. doi: 10.1038/nnano.2008.97. Epub 2008 May 4.
Organisms must adapt to survive, necessitating regulation of molecular and subcellular processes. Green plant photosynthesis responds to potentially damaging light levels by downregulating the fraction of excitation energy that drives electron transfer. Achieving adaptive, self-regulating behaviour in synthetic molecules is a critical challenge that must be met if the promises of nanotechnology are to be realized. Here we report a molecular pentad consisting of two light-gathering antennas, a porphyrin electron donor, a fullerene electron acceptor and a photochromic control moiety. At low white-light levels, the molecule undergoes photoinduced electron transfer with a quantum yield of 82%. As the light intensity increases, photoisomerization of the photochrome leads to quenching of the porphyrin excited state, reducing the quantum yield to as low as 27%. This self-regulating molecule modifies its function according to the level of environmental light, mimicking the non-photochemical quenching mechanism for photoprotection found in plants.
生物体必须适应环境以生存,这就需要对分子和亚细胞过程进行调控。绿色植物光合作用通过下调驱动电子转移的激发能比例来应对潜在的有害光照水平。如果要实现纳米技术的前景,那么在合成分子中实现适应性的自我调节行为是一项必须应对的关键挑战。在此,我们报道了一种由两个光收集天线、一个卟啉电子供体、一个富勒烯电子受体和一个光致变色控制部分组成的分子五元体系。在低白光水平下,该分子发生光诱导电子转移,量子产率为82%。随着光强度增加,光色染料的光异构化导致卟啉激发态猝灭,使量子产率降低至低至27%。这种自我调节分子根据环境光的水平改变其功能,模仿了植物中发现的用于光保护的非光化学猝灭机制。