Lifschitz Alejo M, Young Ryan M, Mendez-Arroyo Jose, Stern Charlotte L, McGuirk C Michael, Wasielewski Michael R, Mirkin Chad A
Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208, USA.
Nat Commun. 2015 Mar 30;6:6541. doi: 10.1038/ncomms7541.
Biological photosynthetic machinery allosterically regulate light harvesting via conformational and electronic changes at the antenna protein complexes as a response to specific chemical inputs. Fundamental limitations in current approaches to regulating inorganic light-harvesting mimics prevent their use in catalysis. Here we show that a light-harvesting antenna/reaction centre mimic can be regulated by utilizing a coordination framework incorporating antenna hemilabile ligands and assembled via a high-yielding, modular approach. As in nature, allosteric regulation is afforded by coupling the conformational changes to the disruptions in the electrochemical landscape of the framework upon recognition of specific coordinating analytes. The hemilabile ligands enable switching using remarkably mild and redox-inactive inputs, allowing one to regulate the photoredox catalytic activity of the photosynthetic mimic reversibly and in situ. Thus, we demonstrate that bioinspired regulatory mechanisms can be applied to inorganic light-harvesting arrays displaying switchable catalytic properties and with potential uses in solar energy conversion and photonic devices.
生物光合机制通过天线蛋白复合物的构象和电子变化对特定化学输入作出响应,从而对光捕获进行变构调节。当前调节无机光捕获模拟物的方法存在根本局限性,阻碍了它们在催化中的应用。在此,我们表明,通过利用一种包含天线半不稳定配体并通过高产、模块化方法组装的配位框架,可以调节光捕获天线/反应中心模拟物。与自然界一样,当识别特定的配位分析物时,通过将构象变化与框架电化学环境的破坏相耦合,实现变构调节。半不稳定配体能够使用非常温和且无氧化还原活性的输入进行切换,使人们能够可逆地且原位调节光合模拟物的光氧化还原催化活性。因此,我们证明了受生物启发的调节机制可应用于显示可切换催化特性且在太阳能转换和光子器件中具有潜在用途的无机光捕获阵列。