Ozuna-Chacón Sandra, Lapizco-Encinas Blanca H, Rito-Palomares Marco, Martínez-Chapa Sergio O, Reyes-Betanzo Claudia
Departamento de Biotecnología e Ingeniería de Alimentos, Centro de Biotecnología y Departamento de Ingeniería Eléctrica, Tecnológico de Monterrey, Monterrey, NL, México.
Electrophoresis. 2008 Aug;29(15):3115-22. doi: 10.1002/elps.200700865.
Dielectrophoresis (DEP), the motion of particles in nonuniform electric fields, is a nondestructive electrokinetic (EK) transport mechanism can be used to concentrate and separate bioparticles. Traditionally, DEP has been performed employing microelectrodes, an approach that is expensive due to the cost of microelectrode fabrication. An alternative is insulator-based DEP (iDEP), an inexpensive method where nonuniform electric fields are created with arrays of insulating structures. This study presents the effects of operating conditions on the dielectrophoretic behavior of polystyrene microparticles under iDEP. Experiments were performed employing microchannels containing insulating structures that worked as insulators. The parameters varied were pH (8-9) and conductivity (25-100 microS/cm) of the bulk medium, and the magnitude of the applied field (200-850 V/cm). Optimal operating conditions in terms of pH and conductivity were obtained, and the microdevice performance was characterized in terms of concentration factor and minimum electric field required (minimum energy consumption). This is the first report on improving iDEP processes when EOF is present. DEP and EOF have been studied extensively, however, this study integrates the effect of suspending medium characteristics on both EK phenomena. These findings will allow improving the performance of iDEP microdevices achieving the highest concentration fold with the lowest energy consumption.
介电泳(DEP)是指粒子在非均匀电场中的运动,是一种无损的电动(EK)传输机制,可用于浓缩和分离生物粒子。传统上,DEP是通过使用微电极来实现的,由于微电极制造的成本,这种方法很昂贵。另一种方法是基于绝缘体的DEP(iDEP),这是一种廉价的方法,通过绝缘结构阵列产生非均匀电场。本研究展示了操作条件对iDEP下聚苯乙烯微粒子介电泳行为的影响。实验采用含有作为绝缘体的绝缘结构的微通道进行。变化的参数包括本体介质的pH值(8 - 9)和电导率(25 - 100微西门子/厘米),以及施加电场的强度(200 - 850伏/厘米)。获得了pH值和电导率方面的最佳操作条件,并根据浓缩因子和所需的最小电场(最小能耗)对微器件性能进行了表征。这是关于存在电渗流(EOF)时改善iDEP过程的首篇报道。DEP和EOF已经得到了广泛研究,然而,本研究综合了悬浮介质特性对这两种EK现象的影响。这些发现将有助于提高iDEP微器件的性能,以最低的能耗实现最高的浓缩倍数。