Suppr超能文献

通过分类回归树快速预测13种硅胶薄层层析筛选系统中溶质的保留情况。

Quick prediction of the retention of solutes in 13 thin layer chromatographic screening systems on silica gel by classification and regression trees.

作者信息

Komsta Łukasz

机构信息

Department of Medicinal Chemistry, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland.

出版信息

J Sep Sci. 2008 Aug;31(15):2899-909. doi: 10.1002/jssc.200800237.

Abstract

The use of classification and regression trees (CART) was studied in a quantitative structure-retention relationship (QSRR) context to predict the retention in 13 thin layer chromatographic screening systems on a silica gel, where large datasets of interlaboratory determined retention are available. The response (dependent variable) was the rate mobility (RM) factor, while a set of atomic contributions and functional substituent counts was used as an explanatory dataset. The trees were investigated against optimal complexity (number of the leaves) by external validation and internal crossvalidation. Their predictive performance is slightly lower than full atomic contribution model, but the main advantage is the simplicity. The retention prediction with the proposed trees can be done without computer or even pocket calculator.

摘要

在定量结构-保留关系(QSRR)背景下研究了分类与回归树(CART)的应用,以预测在硅胶上13种薄层色谱筛选系统中的保留情况,在此可获得实验室间测定保留情况的大型数据集。响应(因变量)是比移值(RM)因子,而一组原子贡献和官能团取代基计数用作解释性数据集。通过外部验证和内部交叉验证针对最佳复杂度(叶数)对树进行了研究。它们的预测性能略低于全原子贡献模型,但主要优点是简单。使用所提出的树进行保留预测无需计算机甚至袖珍计算器即可完成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验