Suppr超能文献

来自丁香假单胞菌丁香致病变种22d/93的3-甲基精氨酸可抑制其近缘种大豆疫霉丁香致病变种引起的白叶枯病。

3-Methylarginine from Pseudomonas syringae pv. syringae 22d/93 suppresses the bacterial blight caused by its close relative Pseudomonas syringae pv. glycinea.

作者信息

Braun Sascha D, Völksch Beate, Nüske Jörg, Spiteller Dieter

机构信息

Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, Neugasse 25, 07743 Jena, Germany.

出版信息

Chembiochem. 2008 Aug 11;9(12):1913-20. doi: 10.1002/cbic.200800080.

Abstract

The epiphyte Pseudomonas syringae pv. syringae 22d/93 (Pss22d) produces a toxin that strongly inhibits the growth of its relative, the plant pathogen P. syringae pv. glycinea. The inhibition can be overcome by supplementing the growth medium with the essential amino acid, L-arginine; this suggests that the toxin acts as an inhibitor of the arginine biosynthesis. The highly polar toxin was purified by bioassay-guided fractionation using ion-exchange chromatography and subsequent RP-HPLC fractionation. The structure of the natural product was identified by HR-ESI-MS, HR-ESI-MS/MS, and NMR spectroscopy experiments as 3-methylarginine. This amino acid has previously only been known in nature as a constituent of the peptide lavendomycin from Streptomyces lavendulae. Results of experiments in which labeled methionine was fed to Pss22d indicated that the key step in the biosynthesis of 3-methylarginine is the introduction of the methyl group by a S-adenosylmethionine (SAM)-dependent methyltransferase. Transposon mutagenesis of Pss22d allowed the responsible SAM-dependent methyltransferase of the 3-methylarginine biosynthesis to be identified.

摘要

附生植物丁香假单胞菌丁香致病变种22d/93(Pss22d)产生一种毒素,该毒素强烈抑制其亲缘种——植物病原菌大豆疫霉丁香致病变种的生长。通过在生长培养基中添加必需氨基酸L-精氨酸可以克服这种抑制作用;这表明该毒素作为精氨酸生物合成的抑制剂发挥作用。通过使用离子交换色谱进行生物测定引导分级分离以及随后的反相高效液相色谱分级分离,纯化了这种高极性毒素。通过高分辨电喷雾电离质谱(HR-ESI-MS)、高分辨串联电喷雾电离质谱(HR-ESI-MS/MS)和核磁共振光谱实验,确定该天然产物的结构为3-甲基精氨酸。这种氨基酸以前在自然界中仅作为来自淡紫链霉菌的肽薰衣草霉素的组成成分为人所知。用标记的甲硫氨酸喂养Pss22d的实验结果表明,3-甲基精氨酸生物合成的关键步骤是由依赖S-腺苷甲硫氨酸(SAM)的甲基转移酶引入甲基基团。Pss22d的转座子诱变使得能够鉴定出3-甲基精氨酸生物合成中负责的依赖SAM的甲基转移酶。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验