Rahman M Mizanur, Takafuji Makoto, Ihara Hirotaka
Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan.
J Chromatogr A. 2008 Aug 29;1203(1):59-66. doi: 10.1016/j.chroma.2008.07.022. Epub 2008 Jul 12.
Silica-polymer hybrid materials (Sil-T1) have been successfully synthesized from a self-assembling polymerizable organogelator; N'-octadecyl-N(alpha)-(4-vinyl)-benzoyl-L-phenylalanineamide (C(18)-L-Phe-St or 1). Telomerization of compound 1 has been done with commonly used silane coupling agent; 3-mercaptopropyltrimethoxysilane (MPS), and the telomer (T1) was grafted onto porous silica surface to prepare a stationary phase (Sil-T1) for reversed-phase high-performance liquid chromatography. The composition of the new hybrid material (Sil-T1) was determined by elemental analysis, DRIFT-IR, TGA and by (13)C and (29)Si (CP/MAS) NMR spectroscopic measurements. The elemental analysis measurements revealed that the surface coverage by organic phase in Sil-T1 is significantly (about 135%) lower than commercial polymeric octadecylsilyalted silica (ODS-p). In addition, the results of (13)C CP/MAS NMR demonstrated that the N-alkyl moieties of the grafted polymers chain in Sil-T1 remained disordered, amorphous, and mobile represented by gauche conformational form. Furthermore, from the characterization data, the successful grafting process and unagglomerated state of the grafted particles (as observed by scanning electron microscopic, SEM measurements) prove the material to be suitable for HPLC application. The evaluation of chromatographic performance has been done from the retention studies of different size and shape PAHs and aromatic positional isomers. Significantly higher selectivity for PAHs was attributed by Sil-T1 than ODS-p regardless it has low surface coverage and lower order of alkyl chain. The enhancement of selectivity obtained by Sil-T1 can be explained by the contribution of multiple pi-pi interactions between the guest PAHs and the pi-electrons sources (carbonyls and aromatic moieties) of the organic phase of Sil-T1.
二氧化硅-聚合物杂化材料(Sil-T1)已通过一种自组装可聚合有机凝胶剂成功合成;N'-十八烷基-N(α)-(4-乙烯基)-苯甲酰基-L-苯丙氨酸酰胺(C(18)-L-Phe-St或1)。化合物1已与常用的硅烷偶联剂3-巯基丙基三甲氧基硅烷(MPS)进行端粒化反应,并且端粒(T1)被接枝到多孔二氧化硅表面,以制备用于反相高效液相色谱的固定相(Sil-T1)。通过元素分析、漫反射红外傅里叶变换光谱(DRIFT-IR)、热重分析(TGA)以及通过碳-13(¹³C)和硅-29(²⁹Si)交叉极化/魔角旋转(CP/MAS)核磁共振光谱测量来确定新型杂化材料(Sil-T1)的组成。元素分析测量结果表明,Sil-T1中有机相的表面覆盖率显著低于商业聚合物十八烷基硅烷化二氧化硅(ODS-p)(约低135%)。此外,碳-13交叉极化/魔角旋转核磁共振(¹³C CP/MAS NMR)结果表明,Sil-T1中接枝聚合物链的N-烷基部分保持无序、无定形且以gauche构象形式存在的可移动状态。此外,从表征数据来看,接枝颗粒的成功接枝过程和未团聚状态(如通过扫描电子显微镜(SEM)测量所观察到的)证明该材料适用于高效液相色谱应用。通过对不同尺寸和形状的多环芳烃(PAHs)以及芳香位置异构体的保留研究来评估色谱性能。尽管Sil-T1的表面覆盖率低且烷基链有序度较低,但它对PAHs的选择性显著高于ODS-p。Sil-T1所获得的选择性增强可以通过客体PAHs与Sil-T1有机相的π电子源(羰基和芳香部分)之间的多重π-π相互作用来解释。