Suppr超能文献

由纳米管结构介导的不同类型的细胞间连接。

Different types of cell-to-cell connections mediated by nanotubular structures.

作者信息

Veranic Peter, Lokar Marusa, Schütz Gerhard J, Weghuber Julian, Wieser Stefan, Hägerstrand Henry, Kralj-Iglic Veronika, Iglic Ales

机构信息

Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia.

出版信息

Biophys J. 2008 Nov 1;95(9):4416-25. doi: 10.1529/biophysj.108.131375. Epub 2008 Jul 25.

Abstract

Communication between cells is crucial for proper functioning of multicellular organisms. The recently discovered membranous tubes, named tunneling nanotubes, that directly bridge neighboring cells may offer a very specific and effective way of intercellular communication. Our experiments on RT4 and T24 urothelial cell lines show that nanotubes that bridge neighboring cells can be divided into two types. The nanotubes of type I are shorter and more dynamic than those of type II, and they contain actin filaments. They are formed when cells explore their surroundings to make contact with another cell. The nanotubes of type II are longer and more stable than type I, and they have cytokeratin filaments. They are formed when two already connected cells start to move apart. On the nanotubes of both types, small vesicles were found as an integral part of the nanotubes (that is, dilatations of the nanotubes). The dilatations of type II nanotubes do not move along the nanotubes, whereas the nanotubes of type I frequently have dilatations (gondolas) that move along the nanotubes in both directions. A possible model of formation and mechanical stability of nanotubes that bridge two neighboring cells is discussed.

摘要

细胞间通讯对于多细胞生物的正常功能至关重要。最近发现的一种名为隧道纳米管的膜性管道,它能直接连接相邻细胞,可能提供了一种非常特殊且有效的细胞间通讯方式。我们对RT4和T24膀胱上皮细胞系的实验表明,连接相邻细胞的纳米管可分为两种类型。I型纳米管比II型纳米管更短且更具动态性,并且含有肌动蛋白丝。它们是在细胞探索周围环境以与另一个细胞接触时形成的。II型纳米管比I型纳米管更长且更稳定,并且含有细胞角蛋白丝。它们是在两个已经相连的细胞开始分开时形成的。在两种类型的纳米管上,都发现有小囊泡作为纳米管的一个组成部分(即纳米管的扩张部分)。II型纳米管的扩张部分不会沿着纳米管移动,而I型纳米管则经常有扩张部分(缆车状结构),这些扩张部分会沿纳米管双向移动。本文讨论了连接两个相邻细胞的纳米管的形成及机械稳定性的一种可能模型。

相似文献

1
Different types of cell-to-cell connections mediated by nanotubular structures.
Biophys J. 2008 Nov 1;95(9):4416-25. doi: 10.1529/biophysj.108.131375. Epub 2008 Jul 25.
4
Tunneling Nanotubes as a Novel Route of Cell-to-Cell Spread of Herpesviruses.
J Virol. 2018 Apr 27;92(10). doi: 10.1128/JVI.00090-18. Print 2018 May 15.
5
Multi-level communication of human retinal pigment epithelial cells via tunneling nanotubes.
PLoS One. 2012;7(3):e33195. doi: 10.1371/journal.pone.0033195. Epub 2012 Mar 22.
7
The art of cellular communication: tunneling nanotubes bridge the divide.
Histochem Cell Biol. 2008 May;129(5):539-50. doi: 10.1007/s00418-008-0412-0. Epub 2008 Apr 2.
9
Actin is not required for nanotubular protrusions of primary astrocytes grown on metal nano-lawn.
Mol Membr Biol. 2007 May-Jun;24(3):243-55. doi: 10.1080/09687860601141730.
10
Nanotubular highways for intercellular organelle transport.
Science. 2004 Feb 13;303(5660):1007-10. doi: 10.1126/science.1093133.

引用本文的文献

1
The promise of mitochondria in the treatment of glioblastoma: a brief review.
Discov Oncol. 2025 Feb 9;16(1):142. doi: 10.1007/s12672-025-01891-y.
2
Interpericyte Tunneling Nanotubes Are Nonuniformly Distributed in the Human Macula.
Invest Ophthalmol Vis Sci. 2024 Nov 4;65(13):28. doi: 10.1167/iovs.65.13.28.
3
Intercellular Highways in Transport Processes.
Results Probl Cell Differ. 2024;73:173-201. doi: 10.1007/978-3-031-62036-2_9.
7
Fine-Tuning the Nanostructured Titanium Oxide Surface for Selective Biological Response.
ACS Appl Bio Mater. 2023 Dec 18;6(12):5481-5492. doi: 10.1021/acsabm.3c00686. Epub 2023 Dec 7.
8
The direct transfer approach for transcellular drug delivery.
Drug Deliv. 2023 Dec;30(1):2288799. doi: 10.1080/10717544.2023.2288799. Epub 2023 Nov 30.
9
Mitochondrial transfer in hematological malignancies.
Biomark Res. 2023 Oct 5;11(1):89. doi: 10.1186/s40364-023-00529-x.

本文引用的文献

1
Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells.
Nat Cell Biol. 2008 May;10(5):619-24. doi: 10.1038/ncb1725. Epub 2008 Apr 20.
2
Shiga toxin induces tubular membrane invaginations for its uptake into cells.
Nature. 2007 Nov 29;450(7170):670-5. doi: 10.1038/nature05996.
3
Actin is not required for nanotubular protrusions of primary astrocytes grown on metal nano-lawn.
Mol Membr Biol. 2007 May-Jun;24(3):243-55. doi: 10.1080/09687860601141730.
4
Possible role of flexible red blood cell membrane nanodomains in the growth and stability of membrane nanotubes.
Blood Cells Mol Dis. 2007 Jul-Aug;39(1):14-23. doi: 10.1016/j.bcmd.2007.02.013. Epub 2007 May 1.
5
Structural and regulatory functions of keratins.
Exp Cell Res. 2007 Jun 10;313(10):2021-32. doi: 10.1016/j.yexcr.2007.03.005. Epub 2007 Mar 15.
6
Tunneling nanotubes: a new route for the exchange of components between animal cells.
FEBS Lett. 2007 May 22;581(11):2194-201. doi: 10.1016/j.febslet.2007.03.071. Epub 2007 Apr 4.
7
GM1 and GM3 gangliosides highlight distinct lipid microdomains within the apical domain of epithelial cells.
FEBS Lett. 2007 May 1;581(9):1783-7. doi: 10.1016/j.febslet.2007.03.065. Epub 2007 Apr 4.
8
(Un)confined diffusion of CD59 in the plasma membrane determined by high-resolution single molecule microscopy.
Biophys J. 2007 May 15;92(10):3719-28. doi: 10.1529/biophysj.106.095398. Epub 2007 Feb 26.
9
The making of filopodia.
Curr Opin Cell Biol. 2006 Feb;18(1):18-25. doi: 10.1016/j.ceb.2005.11.002. Epub 2005 Dec 6.
10
Curvature-induced accumulation of anisotropic membrane components and raft formation in cylindrical membrane protrusions.
J Theor Biol. 2006 Jun 7;240(3):368-73. doi: 10.1016/j.jtbi.2005.09.020. Epub 2005 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验