Bruschi Maurizio, De Gioia Luca, Mitrić Roland, Bonacić-Koutecký Vlasta, Fantucci Piercarlo
Department of Environmental Science, University of Milano-Bicocca, Piazza della Scienza 1, Milan, Italy.
Phys Chem Chem Phys. 2008 Aug 21;10(31):4573-83. doi: 10.1039/b718603g. Epub 2008 Jun 24.
The present paper shows how theoretically determined electron paramagnetic resonance (EPR) parameters can help in assigning the most favorable structure of Cu(ii) complexes in octarepeat (OR) regions (PHGGGWGQ) of the prion protein (PrP). This could contribute to a better understanding of the molecular structure of the Cu(OR) complexes, as some features of such species in solution are still unclear. The present theoretical investigation on [Cu(ii)(HGGG)] and [Cu(ii)(HGGGW)] complexes was carried out to confirm the stability of relevant isomers, and in particular, to evaluate the hyperfine coupling constants (hcc) with (63)Cu, (14)N and (17)O nuclei, as well as the g values. The hcc (and to a lesser extent the g components) are useful probes for checking whether the computed EPR parameters for specific isomers fit the experimental data, thus permitting the association of the observed spectra with a specific complex structure. The results obtained suggest that the Cu(ii) ion in the [Cu(HGGG)] isomers prefers a square pyramidal coordination with three nitrogen atoms of the peptide and one carbonyl oxygen atom in the basal plane. Also the Cu(ii) ion in the [Cu(HGGGW)] complex is penta-coordinated. The penta-coordination does not actually involve the tryptophan residue but an additional water molecule, forced to occupy the axial coordination position by a rather extended hydrogen-bond network, promoted by the tryptophan residue. The comparison between the calculated and experimental values of EPR parameters allows one to suggest the assignment of the coordination mode of the Cu(ii) ion in the considered peptide ligands. The computed values of the g components seem to be little affected by a particular coordination mode. In particular, the g( parallel) component is always underestimated by about 0.1 with respect to the experiment. The calculated values of the hcc, in contrast, are in acceptable agreement with the experimental values, in spite of the fact that the large size of the species under consideration forced us to accept a certain level of approximation in the computational procedure. Nevertheless, the present study must be considered as one of the first examples of truly ab initio calculations of EPR parameters for systems as large as the Cu(OR)-type complexes.
本文展示了理论确定的电子顺磁共振(EPR)参数如何有助于确定朊病毒蛋白(PrP)八聚体重复(OR)区域(PHGGGWGQ)中Cu(II)配合物的最有利结构。这有助于更好地理解Cu(OR)配合物的分子结构,因为此类物种在溶液中的一些特征仍不清楚。对[Cu(II)(HGGG)]和[Cu(II)(HGGGW)]配合物进行了本次理论研究,以确认相关异构体的稳定性,特别是评估与(63)Cu、(14)N和(17)O核的超精细耦合常数(hcc)以及g值。hcc(以及在较小程度上的g分量)是用于检查特定异构体的计算EPR参数是否符合实验数据的有用探针,从而允许将观察到的光谱与特定的配合物结构相关联。所得结果表明,[Cu(HGGG)]异构体中的Cu(II)离子更喜欢与肽的三个氮原子和基面上的一个羰基氧原子形成四方锥配位。[Cu(HGGGW)]配合物中的Cu(II)离子也是五配位的。这种五配位实际上并不涉及色氨酸残基,而是一个额外的水分子,它被色氨酸残基促进形成的相当广泛的氢键网络迫使占据轴向配位位置。EPR参数计算值与实验值的比较使人们能够提出所考虑的肽配体中Cu(II)离子配位模式的归属。g分量的计算值似乎受特定配位模式的影响很小。特别是,相对于实验,g(平行)分量总是被低估约0.1。相比之下,hcc的计算值与实验值的吻合度尚可,尽管所考虑物种的大尺寸迫使我们在计算过程中接受一定程度的近似。然而,本研究必须被视为对像Cu(OR)型配合物这样大的系统进行EPR参数真正从头算的首批示例之一。