Suppr超能文献

[啮齿动物伴侣偏好的生物学和神经基础:理解人类伴侣关系的模型]

[Biological and neural bases of partner preferences in rodents: models to understand human pair bonds].

作者信息

Coria-Avila G A, Hernández-Aguilar M E, Toledo-Cárdenas R, García-Hernández L I, Manzo J, Pacheco P, Miquel M, Pfaus J G

机构信息

Instituto de Neuroetología. Universidad Veracruzana, Unidad Periférica Xalapa, Universidad Nacional Autónoma de México.

出版信息

Rev Neurol. 2008;47(4):209-14.

Abstract

AIM

To analyse the biological and neural bases of partner preference formation in rodents as models to understand human pair bonding.

DEVELOPMENT

Rodents are social individuals, capable of forming short- or long-lasting partner preferences that develop slowly by stimuli like cohabitation, or rapidly by stimuli like sex and stress. Dopamine, corticosteroids, oxytocin, vasopressin, and opioids form the neurochemical substrate for pair bonding in areas like the nucleus accumbens, the prefrontal cortex, the piriform cortex, the medial preoptic area, the ventral tegmental area and the medial amygdala, among others. Additional areas may participate depending on the nature of the conditioned stimuli by which and individual recognizes a preferred partner.

CONCLUSIONS

Animal models help us understand that the capacity of an individual to display long-lasting and selective preferences depends on neural bases, selected throughout evolution. The challenge in neuroscience is to use this knowledge to create new solutions for mental problems associated with the incapacity of an individual to display a social bond, keep one, or cope with the disruption of a consolidated one.

摘要

目的

以啮齿动物为模型分析伴侣偏好形成的生物学和神经基础,以便理解人类的伴侣关系。

进展

啮齿动物是社会性个体,能够形成短期或长期的伴侣偏好,这种偏好可通过同居等刺激缓慢形成,也可通过性和应激等刺激快速形成。多巴胺、皮质类固醇、催产素、加压素和阿片类物质在伏隔核、前额叶皮质、梨状皮质、内侧视前区、腹侧被盖区和内侧杏仁核等区域形成伴侣关系的神经化学基础。根据个体识别偏好伴侣所依据的条件刺激的性质,其他区域可能也会参与其中。

结论

动物模型有助于我们理解个体表现出持久和选择性偏好的能力取决于在整个进化过程中被选择的神经基础。神经科学面临的挑战是利用这些知识为与个体无法建立社会联系、维持社会联系或应对稳固的社会联系被破坏相关的心理问题创造新的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验