Cong Hong, Niedzwiedzki Dariusz M, Gibson George N, LaFountain Amy M, Kelsh Rhiannon M, Gardiner Alastair T, Cogdell Richard J, Frank Harry A
Department of Chemistry, University of Connecticut, U-3060, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, USA.
J Phys Chem B. 2008 Aug 28;112(34):10689-703. doi: 10.1021/jp711946w. Epub 2008 Jul 31.
Steady-state and ultrafast time-resolved optical spectroscopic investigations have been carried out at 293 and 10 K on LH2 pigment-protein complexes isolated from three different strains of photosynthetic bacteria: Rhodobacter (Rb.) sphaeroides G1C, Rb. sphaeroides 2.4.1 (anaerobically and aerobically grown), and Rps. acidophila 10050. The LH2 complexes obtained from these strains contain the carotenoids, neurosporene, spheroidene, spheroidenone, and rhodopin glucoside, respectively. These molecules have a systematically increasing number of pi-electron conjugated carbon-carbon double bonds. Steady-state absorption and fluorescence excitation experiments have revealed that the total efficiency of energy transfer from the carotenoids to bacteriochlorophyll is independent of temperature and nearly constant at approximately 90% for the LH2 complexes containing neurosporene, spheroidene, spheroidenone, but drops to approximately 53% for the complex containing rhodopin glucoside. Ultrafast transient absorption spectra in the near-infrared (NIR) region of the purified carotenoids in solution have revealed the energies of the S1 (2(1)Ag-)-->S2 (1(1)Bu+) excited-state transitions which, when subtracted from the energies of the S0 (1(1)Ag-)-->S2 (1(1)Bu+) transitions determined by steady-state absorption measurements, give precise values for the positions of the S1 (2(1)Ag-) states of the carotenoids. Global fitting of the ultrafast spectral and temporal data sets have revealed the dynamics of the pathways of de-excitation of the carotenoid excited states. The pathways include energy transfer to bacteriochlorophyll, population of the so-called S* state of the carotenoids, and formation of carotenoid radical cations (Car*+). The investigation has found that excitation energy transfer to bacteriochlorophyll is partitioned through the S1 (1(1)Ag-), S2 (1(1)Bu+), and S* states of the different carotenoids to varying degrees. This is understood through a consideration of the energies of the states and the spectral profiles of the molecules. A significant finding is that, due to the low S1 (2(1)Ag-) energy of rhodopin glucoside, energy transfer from this state to the bacteriochlorophylls is significantly less probable compared to the other complexes. This work resolves a long-standing question regarding the cause of the precipitous drop in energy transfer efficiency when the extent of pi-electron conjugation of the carotenoid is extended from ten to eleven conjugated carbon-carbon double bonds in LH2 complexes from purple photosynthetic bacteria.
在293K和10K温度下,对从三种不同光合细菌菌株中分离出的LH2色素 - 蛋白质复合物进行了稳态和超快时间分辨光谱研究:球形红杆菌(Rb.)G1C、球形红杆菌2.4.1(厌氧和好氧培养)以及嗜酸红假单胞菌10050。从这些菌株获得的LH2复合物分别含有类胡萝卜素、八氢番茄红素、球形烯、球形酮和视紫红质葡萄糖苷。这些分子中π电子共轭碳 - 碳双键的数量呈系统性增加。稳态吸收和荧光激发实验表明,从类胡萝卜素到细菌叶绿素的能量转移总效率与温度无关,对于含有八氢番茄红素、球形烯、球形酮的LH2复合物,该效率在约90%左右几乎恒定,但对于含有视紫红质葡萄糖苷的复合物,该效率降至约53%。溶液中纯化类胡萝卜素在近红外(NIR)区域的超快瞬态吸收光谱揭示了S1(2(1)Ag -)→S2(1(1)Bu +)激发态跃迁的能量,当从稳态吸收测量确定的S0(1(1)Ag -)→S2(1(1)Bu +)跃迁能量中减去该能量时,可得到类胡萝卜素S1(2(1)Ag -)态位置的精确值。对超快光谱和时间数据集的全局拟合揭示了类胡萝卜素激发态去激发途径的动力学。这些途径包括向细菌叶绿素的能量转移、类胡萝卜素所谓S态的布居以及类胡萝卜素自由基阳离子(Car +)的形成。研究发现,向细菌叶绿素的激发能量转移在不同程度上通过不同类胡萝卜素的S1(1(1)Ag -)、S2(1(1)Bu +)和S*态进行分配。这可以通过考虑这些态的能量和分子的光谱轮廓来理解。一个重要发现是,由于视紫红质葡萄糖苷的S1(2(1)Ag -)能量较低,与其他复合物相比,从该态向细菌叶绿素的能量转移可能性显著降低。这项工作解决了一个长期存在的问题,即当紫色光合细菌LH2复合物中类胡萝卜素的π电子共轭程度从十个共轭碳 - 碳双键扩展到十一个时,能量转移效率急剧下降的原因。