Yan Hui, Chu Liang T
Wadsworth Center, New York State Health Department, Albany, New York 12201-0509, USA.
Langmuir. 2008 Sep 2;24(17):9410-20. doi: 10.1021/la8008706. Epub 2008 Aug 1.
The interactions between oxalic acid (C 2H 2O 4) and H 2O on a polycrystalline Cu surface have been investigated by reflection-absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) methods. The desorption of H 2O and C 2H 2O 4 was studied; we found that the ice desorption temperature increases with the ice-film thickness. Desorption of the C 2H 2O 4 layer involves a structural modification and sublimation. The H 2O/C 2H 2O 4 and C 2H 2O 4/H 2O interfaces and the codeposited C 2H 2O 4+H 2O were prepared on the Cu surface by varying deposition sequences of gaseous C 2H 2O 4 and H 2O at 155 K. We found that the interaction between ice and C 2H 2O 4 does not lead to the H 2O-induced deprotonation of C 2H 2O 4 in a temperature range 155-283 K. However, H-bonding interactions between H 2O and C 2H 2O 4 can lead to the formation of a metastable oxalic acid-ice complex in the C 2H 2O 4/H 2O and C 2H 2O 4+H 2O systems during the TPD process. Desorption of H 2O from the C 2H 2O 4/H 2O/Cu system is suggested to involve the diffusion of H 2O through the top C 2H 2O 4 layer. H 2O desorption is followed by a rearrangement of C 2H 2O 4 to form a C 2H 2O 4 adlayer on Cu in the C 2H 2O 4+H 2O system. These experimental findings suggest that C 2H 2O 4 is not ionized on snow and ice in the polar boundary layer and at upper tropospheric temperatures ( approximately 240 K).
通过反射吸收红外光谱(RAIRS)和程序升温脱附(TPD)方法,研究了草酸(C₂H₂O₄)与H₂O在多晶铜表面的相互作用。研究了H₂O和C₂H₂O₄的脱附;我们发现冰的脱附温度随冰膜厚度增加而升高。C₂H₂O₄层的脱附涉及结构改性和升华。通过在155K下改变气态C₂H₂O₄和H₂O的沉积顺序,在铜表面制备了H₂O/C₂H₂O₄和C₂H₂O₄/H₂O界面以及共沉积的C₂H₂O₄+H₂O。我们发现,在155 - 283K温度范围内,冰与C₂H₂O₄之间的相互作用不会导致H₂O诱导的C₂H₂O₄去质子化。然而,在TPD过程中,H₂O与C₂H₂O₄之间的氢键相互作用可导致在C₂H₂O₄/H₂O和C₂H₂O₄+H₂O体系中形成亚稳态的草酸 - 冰络合物。从C₂H₂O₄/H₂O/Cu体系中脱附H₂O被认为涉及H₂O通过顶层C₂H₂O₄层的扩散。在C₂H₂O₄+H₂O体系中,H₂O脱附后C₂H₂O₄会重新排列,在铜上形成C₂H₂O₄吸附层。这些实验结果表明,在极地边界层和对流层上部温度(约240K)下,C₂H₂O₄在雪和冰上不会发生电离。