Suppr超能文献

结合多变量体素选择和支持向量机对功能磁共振成像空间模式进行映射和分类

Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.

作者信息

De Martino Federico, Valente Giancarlo, Staeren Noël, Ashburner John, Goebel Rainer, Formisano Elia

机构信息

Department of Cognitive Neurosciences, Faculty of Psychology, University of Maastricht, Maastricht, Postbus 616, 6200 MD, Maastricht, The Netherlands.

出版信息

Neuroimage. 2008 Oct 15;43(1):44-58. doi: 10.1016/j.neuroimage.2008.06.037. Epub 2008 Jul 11.

Abstract

In functional brain mapping, pattern recognition methods allow detecting multivoxel patterns of brain activation which are informative with respect to a subject's perceptual or cognitive state. The sensitivity of these methods, however, is greatly reduced when the proportion of voxels that convey the discriminative information is small compared to the total number of measured voxels. To reduce this dimensionality problem, previous studies employed univariate voxel selection or region-of-interest-based strategies as a preceding step to the application of machine learning algorithms. Here we employ a strategy for classifying functional imaging data based on a multivariate feature selection algorithm, Recursive Feature Elimination (RFE) that uses the training algorithm (support vector machine) recursively to eliminate irrelevant voxels and estimate informative spatial patterns. Generalization performances on test data increases while features/voxels are pruned based on their discrimination ability. In this article we evaluate RFE in terms of sensitivity of discriminative maps (Receiver Operative Characteristic analysis) and generalization performances and compare it to previously used univariate voxel selection strategies based on activation and discrimination measures. Using simulated fMRI data, we show that the recursive approach is suitable for mapping discriminative patterns and that the combination of an initial univariate activation-based (F-test) reduction of voxels and multivariate recursive feature elimination produces the best results, especially when differences between conditions have a low contrast-to-noise ratio. Furthermore, we apply our method to high resolution (2 x 2 x 2 mm(3)) data from an auditory fMRI experiment in which subjects were stimulated with sounds from four different categories. With these real data, our recursive algorithm proves able to detect and accurately classify multivoxel spatial patterns, highlighting the role of the superior temporal gyrus in encoding the information of sound categories. In line with the simulation results, our method outperforms univariate statistical analysis and statistical learning without feature selection.

摘要

在功能脑图谱研究中,模式识别方法能够检测出大脑激活的多体素模式,这些模式与受试者的感知或认知状态相关。然而,当传达判别信息的体素比例与测量的体素总数相比很小时,这些方法的灵敏度会大大降低。为了减少这个维度问题,先前的研究采用单变量体素选择或基于感兴趣区域的策略作为应用机器学习算法的前置步骤。在这里,我们采用一种基于多变量特征选择算法——递归特征消除(RFE)的策略来对功能成像数据进行分类,该算法使用训练算法(支持向量机)递归地消除无关体素并估计信息性空间模式。基于特征/体素的判别能力进行修剪时,测试数据的泛化性能会提高。在本文中,我们根据判别图谱的灵敏度(接受者操作特征分析)和泛化性能对RFE进行评估,并将其与先前基于激活和判别测量使用的单变量体素选择策略进行比较。使用模拟功能磁共振成像数据,我们表明递归方法适用于绘制判别模式,并且基于激活的单变量(F检验)体素减少与多变量递归特征消除相结合产生了最佳结果,特别是当条件之间的差异具有低对比度噪声比时。此外,我们将我们的方法应用于来自听觉功能磁共振成像实验的高分辨率(2×2×2毫米³)数据,在该实验中,受试者受到来自四个不同类别的声音刺激。对于这些真实数据,我们的递归算法能够检测并准确分类多体素空间模式,突出了颞上回在编码声音类别信息中的作用。与模拟结果一致,我们的方法优于单变量统计分析和无特征选择的统计学习。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验