Raundahl Jakob, Loog Marco, Pettersen Paola, Tanko Laszlo B, Nielsen Mads
Department of Computer Science (DIKU), University of Copenhagen, 2100 Copenhagen, Denmark.
IEEE Trans Med Imaging. 2008 Aug;27(8):1054-60. doi: 10.1109/TMI.2008.917245.
We investigate the possibility to develop methodologies for assessing effect specific structural changes of the breast tissue using a general statistical machine learning framework. We present an approach of obtaining objective mammographic pattern measures quantifying a specific biological effect, such as hormone replacement therapy (HRT). We compare results using this approach to using standard density measures. We show that the proposed method can quantify both age related effects and effects caused by HRT. Age effects are significantly detected by our method where standard methodologies fail. The separation of HRT subpopulations using our approach is comparable to the best methodology, which is interactive.
我们研究了使用通用统计机器学习框架开发评估乳腺组织特定结构变化影响的方法的可能性。我们提出了一种获取客观乳腺X线摄影模式测量值的方法,该测量值可量化特定的生物学效应,如激素替代疗法(HRT)。我们将使用这种方法得到的结果与使用标准密度测量方法得到的结果进行比较。我们表明,所提出的方法可以量化与年龄相关的效应以及由HRT引起的效应。在标准方法失效的情况下,我们的方法能显著检测到年龄效应。使用我们的方法对HRT亚组进行分离,其效果与最佳的交互式方法相当。