Suppr超能文献

乳腺钼靶检查中乳腺肿块对比增强技术的评估

An evaluation of contrast enhancement techniques for mammographic breast masses.

作者信息

Singh Sameer, Bovis Keir

机构信息

Autonomous Technologies Research, Department of Computer Science, University of Exeter, Exeter EX4 4QF, UK.

出版信息

IEEE Trans Inf Technol Biomed. 2005 Mar;9(1):109-19. doi: 10.1109/titb.2004.837851.

Abstract

The main aim of this paper is to propose a novel set of metrics that measure the quality of the image enhancement of mammographic images in a computer-aided detection framework aimed at automatically finding masses using machine learning techniques. Our methodology includes a novel mechanism for the combination of the metrics proposed into a single quantitative measure. We have evaluated our methodology on 200 images from the publicly available digital database for screening mammograms. We show that the quantitative measures help us select the best suited image enhancement on a per mammogram basis, which improves the quality of subsequent image segmentation much better than using the same enhancement method for all mammograms.

摘要

本文的主要目的是提出一套新颖的指标,用于在计算机辅助检测框架中衡量乳腺钼靶图像增强的质量,该框架旨在使用机器学习技术自动检测肿块。我们的方法包括一种将所提出的指标组合成单一量化度量的新颖机制。我们在公开可用的乳腺钼靶筛查数字数据库中的200张图像上评估了我们的方法。我们表明,这些量化度量有助于我们在每张乳腺钼靶图像的基础上选择最适合的图像增强方法,这比对所有乳腺钼靶图像使用相同的增强方法能更好地提高后续图像分割的质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验