Suppr超能文献

共翻译折叠促进β-螺旋形成并避免体内聚集。

Cotranslational folding promotes beta-helix formation and avoids aggregation in vivo.

作者信息

Evans Michael S, Sander Ian M, Clark Patricia L

机构信息

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.

出版信息

J Mol Biol. 2008 Nov 14;383(3):683-92. doi: 10.1016/j.jmb.2008.07.035. Epub 2008 Jul 22.

Abstract

Newly synthesized proteins must form their native structures in the crowded environment of the cell, while avoiding non-native conformations that can lead to aggregation. Yet, remarkably little is known about the progressive folding of polypeptide chains during chain synthesis by the ribosome or of the influence of this folding environment on productive folding in vivo. P22 tailspike is a homotrimeric protein that is prone to aggregation via misfolding of its central beta-helix domain in vitro. We have produced stalled ribosome:tailspike nascent chain complexes of four fixed lengths in vivo, in order to assess cotranslational folding of newly synthesized tailspike chains as a function of chain length. Partially synthesized, ribosome-bound nascent tailspike chains populate stable conformations with some native-state structural features even prior to the appearance of the entire beta-helix domain, regardless of the presence of the chaperone trigger factor, yet these conformations are distinct from the conformations of released, refolded tailspike truncations. These results suggest that organization of the aggregation-prone beta-helix domain occurs cotranslationally, prior to chain release, to a conformation that is distinct from the accessible energy minimum conformation for the truncated free chain in solution.

摘要

新合成的蛋白质必须在细胞内拥挤的环境中形成其天然结构,同时避免可能导致聚集的非天然构象。然而,对于核糖体在链合成过程中多肽链的逐步折叠情况,或者这种折叠环境对体内有效折叠的影响,我们知之甚少。P22尾刺蛋白是一种同三聚体蛋白,在体外其中心β-螺旋结构域容易通过错误折叠而聚集。我们在体内制备了四种固定长度的停滞核糖体:尾刺新生链复合物,以评估新合成的尾刺链的共翻译折叠作为链长度的函数。部分合成的、与核糖体结合的新生尾刺链即使在整个β-螺旋结构域出现之前,也会形成具有一些天然状态结构特征的稳定构象,无论伴侣蛋白触发因子是否存在,然而这些构象与释放的、重新折叠的尾刺截短体的构象不同。这些结果表明,易于聚集的β-螺旋结构域的组织在链释放之前就已在共翻译过程中发生,形成一种与溶液中截短的游离链可及的能量最低构象不同的构象。

相似文献

1
Cotranslational folding promotes beta-helix formation and avoids aggregation in vivo.
J Mol Biol. 2008 Nov 14;383(3):683-92. doi: 10.1016/j.jmb.2008.07.035. Epub 2008 Jul 22.
2
A newly synthesized, ribosome-bound polypeptide chain adopts conformations dissimilar from early in vitro refolding intermediates.
J Biol Chem. 2001 Jul 6;276(27):25411-20. doi: 10.1074/jbc.M008490200. Epub 2001 Apr 23.
6
Nascent chains: folding and chaperone interaction during elongation on ribosomes.
Philos Trans R Soc Lond B Biol Sci. 1995 Apr 29;348(1323):89-95. doi: 10.1098/rstb.1995.0049.
10
Folding and function of repetitive structure in the homotrimeric phage P22 tailspike protein.
J Struct Biol. 1998;122(1-2):216-22. doi: 10.1006/jsbi.1998.3974.

引用本文的文献

1
Native Fold Delay and its implications for co-translational chaperone binding and protein aggregation.
Nat Commun. 2025 Feb 15;16(1):1673. doi: 10.1038/s41467-025-57033-z.
2
The ribosome lowers the entropic penalty of protein folding.
Nature. 2024 Sep;633(8028):232-239. doi: 10.1038/s41586-024-07784-4. Epub 2024 Aug 7.
3
Mapping Protein-Protein Interactions at Birth: Single-Particle Cryo-EM Analysis of a Ribosome-Nascent Globin Complex.
ACS Cent Sci. 2024 Feb 1;10(2):385-401. doi: 10.1021/acscentsci.3c00777. eCollection 2024 Feb 28.
4
AutoRNC: An automated modeling program for building atomic models of ribosome-nascent chain complexes.
Structure. 2024 May 2;32(5):621-629.e5. doi: 10.1016/j.str.2024.02.002. Epub 2024 Feb 29.
5
How the ribosome shapes cotranslational protein folding.
Curr Opin Struct Biol. 2024 Feb;84:102740. doi: 10.1016/j.sbi.2023.102740. Epub 2023 Dec 9.
6
Translation Rates and Protein Folding.
J Mol Biol. 2024 Jul 15;436(14):168384. doi: 10.1016/j.jmb.2023.168384. Epub 2023 Dec 6.
7
Protein folding in vitro and in the cell: From a solitary journey to a team effort.
Biophys Chem. 2022 Aug;287:106821. doi: 10.1016/j.bpc.2022.106821. Epub 2022 Apr 29.
8
Peptides before and during the nucleotide world: an origins story emphasizing cooperation between proteins and nucleic acids.
J R Soc Interface. 2022 Feb;19(187):20210641. doi: 10.1098/rsif.2021.0641. Epub 2022 Feb 9.
9
A switch from α-helical to β-strand conformation during co-translational protein folding.
EMBO J. 2022 Feb 15;41(4):e109175. doi: 10.15252/embj.2021109175. Epub 2022 Jan 7.
10
Slowest-first protein translation scheme: Structural asymmetry and co-translational folding.
Biophys J. 2021 Dec 21;120(24):5466-5477. doi: 10.1016/j.bpj.2021.11.024. Epub 2021 Nov 20.

本文引用的文献

1
Real-time observation of trigger factor function on translating ribosomes.
Nature. 2006 Nov 23;444(7118):455-60. doi: 10.1038/nature05225. Epub 2006 Oct 15.
3
An elongated spine of buried core residues necessary for in vivo folding of the parallel beta-helix of P22 tailspike adhesin.
Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3575-80. doi: 10.1073/pnas.0509087103. Epub 2006 Feb 27.
4
Folding zones inside the ribosomal exit tunnel.
Nat Struct Mol Biol. 2005 Dec;12(12):1123-9. doi: 10.1038/nsmb1021. Epub 2005 Nov 20.
5
Homogeneous stalled ribosome nascent chain complexes produced in vivo or in vitro.
Nat Methods. 2005 Oct;2(10):757-62. doi: 10.1038/nmeth790.
6
Monoclonal antibody epitope mapping describes tailspike beta-helix folding and aggregation intermediates.
J Biol Chem. 2005 Jun 17;280(24):23032-40. doi: 10.1074/jbc.M501963200. Epub 2005 Apr 14.
7
Conformations of co-translational folding intermediates.
Protein Pept Lett. 2005 Feb;12(2):189-95. doi: 10.2174/0929866053005908.
8
Protein folding in the cell: reshaping the folding funnel.
Trends Biochem Sci. 2004 Oct;29(10):527-34. doi: 10.1016/j.tibs.2004.08.008.
10
In vivo analysis of the overlapping functions of DnaK and trigger factor.
EMBO Rep. 2004 Feb;5(2):195-200. doi: 10.1038/sj.embor.7400067. Epub 2004 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验